Prime Numbers

密碼學與應用 海洋大學資訊工程系 丁培毅

Prime Number Theorem

♦ Prime Number Theorem:

- * Let $\pi(x)$ be the number of primes less than x
- **★** Then

$$\pi(x) \approx \frac{x}{\ln x}$$

in the sense that the ratio $\pi(x) / (x/\ln x) \to 1$ as $x \to \infty$

- * Also, $\pi(x) \ge \frac{x}{\ln x}$ and for $x \ge 17$, $\pi(x) \le 1.10555 \frac{x}{\ln x}$
- ♦ Ex: number of 100-digit primes

$$\pi(10^{100}) - \pi(10^{99}) \approx \frac{10^{100}}{\ln 10^{100}} - \frac{10^{99}}{\ln 10^{99}} \approx 3.9 \times 10^{97}$$

Prime Numbers

- ♦ Prime number: an integer p>1 that is divisible only by 1 and itself, ex. 2, 3,5, 7, 11, 13, 17...
- ♦ Composite number: an integer n>1 that is not prime
- ♦ **Fact**: there are infinitely many prime numbers. (by Euclid)

pf: \Rightarrow on the contrary, assume a_n is the largest prime number

 \Rightarrow let the finite set of prime numbers be $\{a_0, a_1, a_2, \dots a_n\}$

 \Rightarrow the number b = $a_0^*a_1^*a_2^*...*a_n + 1$ is not divisible by any a_i i.e. b does not have prime factors ≤ a_n

2 cases: \gt if b has a prime factor d, b>d> a_n , then "d is a prime number that is larger than a_n " ... contradiction

 \triangleright if b does not have any prime factor less than b, then "b is a prime number that is larger than a_n " ... contradiction

2

Factors

- \Rightarrow Every composite number can be expressible as a product a·b of integers with 1 < a, b < n
- ♦ Every positive integer has a unique representation as a product of prime numbers raised to different powers.

$$\Rightarrow$$
 Ex. $504 = 2^3 \cdot 3^2 \cdot 7$, $1125 = 3^2 \cdot 5^3$

Factors

- \diamond Lemma: p is a prime number and p | a·b \Longrightarrow p | a or p | b, more generally, p is a prime number and p $\mid a \cdot b \cdot ... \cdot z$ \implies p must divide one of a, b, ..., z
 - * proof:
 - ¢ case 1: p | a
 - - \rightarrow p/ a and p is a prime number \Rightarrow gcd(p, a) = 1 \Rightarrow 1 = a x + p y
 - \rightarrow multiply both side by b, b = b a x + b p y
 - $\rightarrow p \mid a b \Rightarrow p \mid b$
 - **‡** In general: if p | a then we are done, if p ∤ a then p | bc...z, continuing this way, we eventually find that p divides one of the factors of the product

5

("Fair-MAH")

Fermat's Little Theorem

♦ If p is a prime, p \nmid a then $a^{p-1} \equiv 1 \pmod{p}$

Proof: \Rightarrow let $S = \{1, 2, 3, ..., p-1\}$ (Z_p^*) , define $\psi(x) \equiv a \cdot x \pmod{p}$ be a mapping $\psi: S \rightarrow Z$

> $\Rightarrow \forall x \in S, \psi(x) \neq 0 \pmod{p} \Rightarrow \forall x \in S, \psi(x) \in S, i.e. \psi: S \rightarrow S$ if $\psi(x) \equiv a \cdot x \equiv 0 \pmod{p} \implies x \equiv 0 \pmod{p}$ since gcd(a, p) = 1

 $\Rightarrow \forall x, y \in S$, if $x \neq y$ then $\psi(x) \neq \psi(y)$ since

if $\psi(x) \equiv \psi(y) \Rightarrow a \cdot x \equiv a \cdot y \Rightarrow x \equiv y$ since gcd(a, p) = 1

 \Rightarrow from the above two observations, $\psi(1)$, $\psi(2)$,... $\psi(p-1)$ are distinct elements of S

- $\Rightarrow 1 \cdot 2 \cdot \dots \cdot (p-1) \equiv \psi(1) \cdot \psi(2) \cdot \dots \cdot \psi(p-1) \equiv (a \cdot 1) \cdot (a \cdot 2) \cdot \dots \cdot (a \cdot (p-1))$ $\equiv a^{p-1} (1 \cdot 2 \cdot \dots \cdot (p-1)) \pmod{p}$
- \Rightarrow since gcd(i, p) = 1 for i \in S, we can divide both side by 1, 2, 3, ... p-1, and obtain $a^{p-1} \equiv 1 \pmod{p}$

Factorization into primes

- ♦ Theorem: Every positive integer is a product of primes. This factorization into primes is unique, up to reordering of the factors.
 - * Proof: product of primes
- Empty product equals 1.
- Prime is a one factor product.
- * assume there exist positive integers that are not product of primes
- \Rightarrow since n can not be 1 or a prime, n must be composite, i.e. $n = a \cdot b$
- **♦** since n is the smallest, both a and b must be products of primes.
- \Rightarrow n = a·b must also be a product of primes, contradiction
- * Proof: uniqueness of factorization
 - where p_i , q_i are all distinct primes.
 - $\Rightarrow \text{ let } \mathbf{m} = \mathbf{n} / (\mathbf{r_1}^{c_1} \mathbf{r_2}^{c_2} \cdots \mathbf{r_k}^{c_k})$
 - \Rightarrow consider p_1 for example, since p_1 divide $m = q_1q_1..q_1q_2...q_t$, p_1 must divide one of the factors q_i, contradict the fact that "p_i, q_i are distinct primes"

Fermat's Little Theorem

- \Rightarrow Ex: $2^{10} = 1024 \equiv 1 \pmod{11}$ $2^{53} = (2^{10})^5 2^3 \equiv 1^5 2^3 \equiv 8 \pmod{11}$ i.e. $2^{53} \equiv 2^{53 \mod 10} \equiv 2^3 \equiv 8 \pmod{11}$
- \Rightarrow if n is prime, then $2^{n-1} \equiv 1 \pmod{n}$ i.e. if $2^{n-1} \neq 1 \pmod{n}$ then n is not prime \leftarrow (*) usually, if $2^{n-1} \equiv 1 \pmod{n}$, then n is prime
 - * exceptions: $2^{561-1} \equiv 1 \pmod{561}$ although $561 = 3 \cdot 11 \cdot 17$ $2^{1729-1} \equiv 1 \pmod{1729}$ although $1729 = 7 \cdot 13 \cdot 19$
 - * (*) is a quick test for eliminating composite number

Euler's Totient Function $\phi(n)$

- $\phi(n)$: the number of integers $1 \le a < n$ s.t. gcd(a,n)=1
 - * ex. n=10, $\phi(n)=4$ the set is $\{1,3,7,9\}$
- \Rightarrow properties of $\phi(\bullet)$
 - $\star \phi(p) = p-1$, if p is prime
 - $*\phi(p^{r}) = p^{r} p^{r-1} = (1-1/p) \cdot p^{r}$, if p is prime
 - $\star \phi(n \cdot m) = \phi(n) \cdot \phi(m)$ if gcd(n,m)=1 $n \ m - (n-\phi(n)) \ m - (m-\phi(m)) \ n + (n-\phi(n)) \ (m-\phi(m)) = \phi(n) \ \phi(m)$
 - $\star \phi(n \cdot m) =$ $\phi((d_1/d_2/d_3)^2) \cdot \phi(d_2^3) \cdot \phi(d_3^3) \cdot \phi(n/d_1/d_2) \cdot \phi(m/d_1/d_3)$ if $gcd(n,m)=d_1$, $gcd(n/d_1,d_1)=d_2$, $gcd(m/d_1,d_1)=d_3$
 - $\star \phi(n) = n \operatorname{PP}(1-1/p)$
- \Rightarrow ex. $\phi(10)=(2-1)\cdot(5-1)=4$ $\phi(120)=120(1-1/2)(1-1/3)(1-1/5)=32$

How large is $\phi(n)$?

- $\Rightarrow \phi(n) \approx n \cdot 6/\pi^2$ as n goes large
- ♦ Probability that a prime number p is a factor of a random number r is 1/p

- \diamond Probability that two independent random numbers r_1 and r_2 both have a given prime number p as a factor is $1/p^2$
- ♦ The probability that they do not have p as a common factor is thus $1 - 1/p^2$
- \diamond The probability that two numbers r_1 and r_2 have no common prime factor is $P = (1-1/2^2)(1-1/3^2)(1-1/5^2)(1-1/7^2)...$

10

$Pr\{r_1 \text{ and } r_2 \text{ relatively prime }\}$

♦ Equalities:

ex. $45^2 = 3^4 \cdot 5^2$

$$\frac{1}{1-x} = 1+x+x^2+x^3+\dots$$

$$1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+\dots = \pi^2/6$$

$$\Rightarrow P = (1-1/2^2)(1-1/3^2)(1-1/5^2)(1-1/7^2) \cdot \dots$$

$$= ((1+1/2^2+1/2^4+\dots)(1+1/3^2+1/3^4+\dots) \cdot \dots)^{-1}$$

$$= (1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+\dots)^{-1}$$

$$= 6/\pi^2$$

$$\approx 0.61$$

each positive number has a unique prime number factorization

How large is $\phi(n)$?

- \Rightarrow $\phi(n)$ is the number of integers less than n that are relative prime to n
- $\phi(n)/n$ is the probability that a randomly chosen integer is relatively prime to n
- ♦ Therefore, ϕ (n) ≈ n · 6/ π ²
- \Rightarrow P_n = Pr { n random numbers have no common factor }
 - * n independent random numbers all have a given prime p as a factor is $1/p^n$
 - * They do not all have p as a common factor $1 1/p^n$
 - * $P_n = (1+1/2^n+1/3^n+1/4^n+1/5^n+1/6^n+...)^{-1}$ is the Riemann zeta function $\zeta(n)$ http://mathworld.wolfram.com/RiemannZetaFunction.html
 - * Ex. n=4, $\zeta(4) = \pi^4/90 \approx 0.92$

Euler's Theorem

This is true even when $n = p^2$

$$\Rightarrow$$
 If $gcd(a,n)=1$ then $a^{\phi(n)} \equiv 1 \pmod{n}$

Proof: \Rightarrow let S be the set of integers $1 \le x < n$, with gcd(x, n) = 1, define $\psi(x) \equiv a \cdot x \pmod{n}$ be a mapping $\psi \colon S \to Z$

$$\forall x \in S \text{ and } \gcd(a, n) = 1, \quad \text{if } \psi(x) \equiv a \cdot x \equiv 0 \pmod{n} \Rightarrow x \equiv 0 \pmod{n}$$

$$\psi(x) \neq 0 \pmod{n}$$

$$\gcd(\psi(x), n) = 1 \quad \Rightarrow \forall x \in S, \psi(x) \in S, \text{ i.e. } \psi: S \rightarrow S$$

$$\Leftrightarrow \forall x, y \in S, \text{ if } x \neq y \text{ then } \psi(x) \not\equiv \psi(y) \text{ (mod n)'}$$

$$\text{if } \psi(x) \equiv \psi(y) \Rightarrow a \cdot x \equiv a \cdot y \Rightarrow x \equiv y \text{ since } \gcd(a, n) = 1$$

 \Rightarrow from the above two observations, $\forall x \in S$, $\psi(x)$ are distinct elements of S (i.e. $\{\psi(x) \mid \forall x \in S\}$ is S)

$$\Rightarrow \prod_{x \in S} x \equiv \prod_{x \in S} \psi(x) \equiv a^{\phi(n)} \prod_{x \in S} x \pmod{n}$$

 \Rightarrow since gcd(x, n) = 1 for x ∈ S, we can divide both side by x ∈ S one after another, and obtain $a^{\phi(n)} \equiv 1 \pmod{n}$

13

Euler's Theorem

 \diamond Example: What are the last three digits of 7^{803} ?

i.e. we want to find
$$7^{803}$$
 (mod 1000)
 $1000 = 2^3 \cdot 5^3$, $\phi(1000) = 1000(1-1/2)(1-1/5) = 400$
 $7^{803} = 7^{803} \pmod{400} = 7^3 = 343 \pmod{1000}$

 \Rightarrow Example: Compute 2^{43210} (mod 101)?

$$101 = 1 \cdot 101,$$
 $\phi(101) = 100$
 $2^{43210} \equiv 2^{43210 \pmod{100}} \equiv 2^{10} \equiv 1024 \equiv 14 \pmod{101}$

14

A second proof of Euler's Theorem

Euler's Theorem: $\forall a \in \mathbb{Z}_n^*, a^{\phi(n)} \equiv 1 \pmod{n}$

- \Rightarrow We have proved the above theorem by showing that the function $\psi(x) \equiv a \cdot x \pmod{n}$ is a permutation.
- ♦ We can also prove it through Fermat's Little Theorem

$$\begin{split} & \text{consider } n = p \cdot q, \\ & \forall a \in Z_p^*, \, a^{p \cdot 1} \equiv 1 \; (\text{mod } p) \Rightarrow (a^{p \cdot 1})^{q \cdot 1} \equiv a^{\varphi(n)} \equiv 1 \; (\text{mod } p) \\ & \forall a \in Z_q^*, \, a^{q \cdot 1} \equiv 1 \; (\text{mod } q) \Rightarrow (a^{q \cdot 1})^{p \cdot 1} \equiv a^{\varphi(n)} \equiv 1 \; (\text{mod } q) \\ & \text{from CRT, } \forall a \in Z_n^* \; (\text{i.e. } p \not\mid a \; \text{and } q \not\mid a), \\ & a^{\varphi(n)} \equiv 1 \; (\text{mod } n) \end{split}$$

note: the above proof is not valid when p=q

Carmichael Theorem

Carmichael's Theorem:

$$\forall a \in Z_n^*, \ a^{\lambda(n)} \equiv 1 \pmod{n} \ \text{ and } \ a^{n \cdot \lambda(n)} \equiv 1 \pmod{n^2}$$
 where $n = p \cdot q, \ p \neq q, \ \lambda(n) = lcm(p-1, q-1), \ \lambda(n) \mid \phi(n)$

 \diamond like Euler's Theorem, we can prove it through Fermat's Little Theorem, consider $n=p\cdot q$, where $p\neq q$,

$$\forall a \in Z_p^*, \ a^{p-1} \equiv 1 \ (\text{mod } p) \Rightarrow (a^{p-1})^{(q-1)/\text{gcd}(p-1,q-1)} \equiv a^{\lambda(n)} \equiv 1 \ (\text{mod } p)$$

$$\forall a \in Z_q^*, \ a^{q-1} \equiv 1 \ (\text{mod } q) \Rightarrow (a^{q-1})^{(p-1)/\text{gcd}(p-1,q-1)} \equiv a^{\lambda(n)} \equiv 1 \ (\text{mod } q)$$
 from CRT,
$$\forall a \in Z_n^* \ (i.e. \ p \not\mid a \ \text{and} \ q \not\mid a), \quad a^{\lambda(n)} \equiv 1 \ (\text{mod } n)$$
 therefore,
$$\forall a \in Z_n^*, \ a^{\lambda(n)} = 1 + k \cdot n$$
 raise both side to the n-th power, we get
$$a^{n \cdot \lambda(n)} = (1 + k \cdot n)^n,$$

$$\Rightarrow a^{n \cdot \lambda(n)} = 1 + n \cdot k \cdot n + ... \Rightarrow \forall a \in Z_n^* \ (\text{or} \ Z_{n^2}^*), \ a^{n \cdot \lambda(n)} \equiv 1 \ (\text{mod } n^2)$$

Basic Principle to do Exponentiation

- ♦ Let a, n, x, y be integers with n≥1, and gcd(a,n)=1 if x ≡ y (mod ϕ (n)), then $a^x \equiv a^y$ (mod n).
- \diamond If you want to work mod n, you should work mod $\phi(n)$ or $\lambda(n)$ in the exponent.

17

Primitive Testing Procedure

- ♦ How do we test whether h is a primitive root modulo p?
 - ★ naïve method:

go through all powers h^2 , h^3 , ..., h^{p-2} , and make sure $\neq 1$ modulo p

* faster method:

assume p-1 has prime factors $q_1, q_2, ..., q_n$, for all q_i , make sure $h^{(p-1)/q_i}$ modulo p is not 1, then h is a primitive root

Intuition: let $h \equiv g^a \pmod p$, if gcd(a, p-1) = d (i.e. g^a is not a primitive root), $(g^a)^{(p-1)/q_i} \equiv (g^{a/q_i})^{(p-1)} \equiv 1 \pmod p$ for some $q_i \mid d$

Primitive Roots modulo p

♦ When p is a prime number, a primitive root modulo p is a number whose powers yield every nonzero element mod p. (equivalently, the order of a primitive root is p-1)

 \Rightarrow ex: $3^1 \equiv 3$, $3^2 \equiv 2$, $3^3 \equiv 6$, $3^4 \equiv 4$, $3^5 \equiv 5$, $3^6 \equiv 1 \pmod{7}$ 3 is a primitive root mod 7

- ♦ sometimes called a multiplicative generator
- \diamond there are plenty of primitive roots, actually $\phi(p-1)$
 - * ex. p=101, $\phi(p-1)=100\cdot(1-1/2)\cdot(1-1/5)=40$ p=143537, $\phi(p-1)=143536\cdot(1-1/2)\cdot(1-1/8971)=71760$

18

Primitive Testing Procedure (cont'd)

♦ Procedure to test a primitive g:

assuming p-1 has prime factors $q_1, q_2, ..., q_n$, (i.e. p-1 = $q_1^{r_1}...q_n^{r_n}$) for all q_i , make sure $g^{(p-1)/q_i}$ (mod p) is not 1

Proof:

- $$\begin{split} &(a) \text{ by definition, } g^{ord_p(g)} \equiv 1 \text{ (mod p), } g^{\phi(p)} \equiv 1 \text{ (mod p) therefore } ord_p(g) \leq \phi(p) \\ & \text{ if } \phi(p) = ord_p(g) * k + s \text{ with } s < ord_p(g) \\ & g^{\phi(p)} \equiv g^{ord_p(g) * k} g^s \equiv g^s \equiv 1 \text{ (mod p), but } s < ord_p(g) \Rightarrow s = 0 \\ & \Rightarrow ord_p(g) \mid \phi(p) \text{ and } ord_p(g) \leq \phi(p) \end{split}$$
- (b) assume g is not a primitive root i.e $\operatorname{ord}_p(g) < \varphi(p) = p-1$ then \exists i, such that $\operatorname{ord}_p(g) \mid (p-1)/q_i$ i.e. $g^{(p-1)/q_i} \equiv 1 \pmod p$ for some q_i
- (c) if for all q_i , $g^{(p-1)/q_i} \neq 1 \pmod{p}$ then $\operatorname{ord}_p(g) = \phi(p)$ and g is a primitive root modulo p

Number of Primitive Root in Z_p^*

- \diamond Why are there $\phi(p-1)$ primitive roots?

- * $g, g^2, g^3, ..., g^{p-1}$ is a permutation of 1, 2, ..., p-1
- * if gcd(a, p-1)=d, then $(g^a)^{(p-1)/d} \equiv (g^{a/d})^{(p-1)} \equiv 1 \pmod{p}$ which says that the order of g^a is at most (p-1)/d, therefore, g^a is not a primitive root \Rightarrow There are at most $\phi(p-1)$ primitive roots in Z_p^*
- * For an element g^a in Z_p^* where gcd(a, p-1) = 1, it is guaranteed that $(g^a)^{(p-1)/q_i} \neq 1 \pmod{p}$ for all q_i $(q_i$ is factors or p-1)

assume that for a certain q_i , $(g^a)^{(p-1)/q_i} \equiv 1 \pmod{p}$

$$\Rightarrow$$
 p-1 | a · (p-1) / q_i

$$\Rightarrow \exists$$
 integer k, a · (p-1) / $q_i = k \cdot (p-1)$ i.e. $a = k \cdot q_i$

- \Rightarrow q_i | a
- \Rightarrow q_i | gcd(a, p-1) contradiction

21

♦ How do we define a multiplicative generator in Z_n^* if n is a composite number?

* Is there an element in Z_n^* that can generate all elements of Z_n^* ?

Multiplicative Generators in Z_n^*

- * If $n = p \cdot q$, the answer is negative. From Carmichael theorem, $\forall a \in \mathbb{Z}_n^*$, $a^{\lambda(n)} \equiv 1 \pmod{n}$, $\gcd(p-1, q-1)$ is at least 2, $\lambda(n) = \text{lcm}(p-1, q-1)$ is at most $\phi(n) / 2$. The size of a maximal possible multiplicative subgroup in Z_n^* is therefore less than $\lambda(n)$.
- * How many elements in Z_n^* can generate the maximal possible subgroup of Z_n^* ?

Finding Square Roots mod n

- \Rightarrow For example: find x such that $x^2 \equiv 71 \pmod{77}$
 - **★** Is there any solution?
 - * How many solutions are there?
 - **★** How do we solve the above equation systematically?
- \diamond In general: find x s.t. $x^2 \equiv b \pmod{n}$,

where $b \in QR_n$, $n = p \cdot q$, and p, q are prime numbers

 \Rightarrow Easier case: find x s.t. $x^2 \equiv b \pmod{p}$,

where p is a prime number, $b \in QR_n$

Note: QR_n is "Quadratic Residue in Z_n " to be defined later

Finding Square Root mod *p*

 \Leftrightarrow Given $y \in \mathbb{Z}_p^*$, find x, s.t. $x^2 \equiv y \pmod{p}$, p is prime

Two cases:
$$p \equiv 1 \pmod{4}$$
 (i.e. $p = 4k + 1$): probabilistic algorithm $p \equiv 3 \pmod{4}$ (i.e. $p = 4k + 3$): deterministic algorithm

♦ Is there any solution?

check
$$y^{\frac{p-1}{2}} \not\supseteq 1 \pmod{p}$$
 Is y a QR_p?

$$\Rightarrow p \equiv 3 \pmod{4}$$

$$x \equiv \pm y^{\frac{p+1}{4}} \pmod{p}$$

(p+1)/4 = (4k+3+1)/4 = k+1 is an integer

$$\Rightarrow x^2 = y^{(p+1)/2} = y^{(p-1)/2} \cdot y \equiv y \pmod{p}$$

22

Finding Square Root mod *p*

$$\Rightarrow p \equiv 1 \pmod{4}$$

- * Peralta, Eurocrypt'86, $p = 2^s q + 1$
- * 3-step probabilistic procedure
- 1. Choose a random number r, if $r^2 \equiv y \pmod{p}$, output x = r
- 2. Calculate $(r+z)^{(p-1)/2} \equiv u + v z \pmod{f(z)}$, $f(z) = z^2 y$

note:
$$(b+cz)(d+ez) \equiv (bd+ce\ z^2) + (be+cd)\ z$$

 $\equiv (bd+ce\ y) + (be+cd)\ z \pmod{z^2-y}$

use *square-multiply* algorithm to calculate $(r+z)^{(p-1)/2}$

* the probability to successfully find x for each $r \ge 1/2$

Finding Square Root mod p

 \Rightarrow ex: finding x such that $x^2 \equiv 12 \pmod{13}$ solution:

```
$\psi 13 \equiv 1 \text{ (mod 4)}$
$\psi \text{choose } r = 3, 3^2 = 9 \neq 12$
$\psi (3 + z)^{(13-1)/2} = (3 + z)^6 \equiv 12 + 0 z \text{ (mod } z^2-12)$
$\psi \text{choose } r = 7, 7^2 \equiv 10 \neq 12$
$\psi (7 + z)^{(13-1)/2} = (7 + z)^6 \equiv 0 + 8 z \text{ (mod } z^2-12)$
$\Rightarrow x = 8^{-1} = 5 \text{ (mod } 13)$
```

Why does it work???

Why is the success probability $> \frac{1}{2}$???

26

Finding Square Roots mod n

 \diamond Now we return to the question of solving square roots in Z_n^* , i.e.

for an integer $y \in QR_n$, find $x \in Z_n^*$ such that $x^2 \equiv y \pmod{n}$

- ♦ We would like to transform the problem into solving square roots mod p.
- ♦ Question: for n=p·q Is solving " $x^2 \equiv y \pmod{n}$ " equivalent to solving " $x^2 \equiv y \pmod{p}$ and $x^2 \equiv y \pmod{q}$ "???

Finding Square Roots mod p.q

- \Rightarrow find x such that $x^2 \equiv 71 \pmod{77}$
 - **★** 77 = 7 · 11
 - * " x^* satisfies $f(x^*) \equiv 71 \pmod{77}$ " \Leftrightarrow " x^* satisfies both $f(x^*) \equiv 1 \pmod{7}$ and $f(x^*) \equiv 5 \pmod{11}$ "
 - * since 7 and 11 are prime numbers, we can solve $x^2 \equiv 1 \pmod{7}$ and $x^2 \equiv 5 \pmod{11}$ far more easily than $x^2 \equiv 71 \pmod{77}$

 $x^2 \equiv 1 \pmod{7}$ has two solutions: $x \equiv \pm 1 \pmod{7}$

 $x^2 \equiv 5 \pmod{11}$ has two solutions: $x \equiv \pm 4 \pmod{11}$

* put them together and use CRT to calculate the four solutions

 $x \equiv 1 \pmod{7} \equiv 4 \pmod{11} \Rightarrow x \equiv 15 \pmod{77}$

 $x \equiv 1 \pmod{7} \equiv 7 \pmod{11} \Rightarrow x \equiv 29 \pmod{77}$

 $x \equiv 6 \pmod{7} \equiv 4 \pmod{11} \Rightarrow x \equiv 48 \pmod{77}$

 $x \equiv 6 \pmod{7} \equiv 7 \pmod{11} \Rightarrow x \equiv 62 \pmod{77}$

Computational Equivalence to Factoring

- ♦ Previous slides show that once you know the factoring of n to be p and q, you can easily solve the square roots of n
- ♦ Indeed, if you can solve the square roots for one single quadratic residue mod n, you can factor n.
 - * from the four solutions $\pm a$, $\pm b$ on the previous slide

```
\begin{array}{c} x\equiv c\ (mod\ p)\equiv\ d\ (mod\ q)\Rightarrow x\equiv\ a\ (mod\ p\cdot q)\\ x\equiv c\ (mod\ p)\equiv\ -d\ (mod\ q)\Rightarrow x\equiv\ b\ (mod\ p\cdot q)\\ x\equiv\ -c\ (mod\ p)\equiv\ d\ (mod\ q)\Rightarrow x\equiv\ -b\ (mod\ p\cdot q)\\ x\equiv\ -c\ (mod\ p)\equiv\ -d\ (mod\ q)\Rightarrow x\equiv\ -a\ (mod\ p\cdot q)\\ we\ can\ find\ out\ a\equiv\ b\ (mod\ p)\ and\ \ a\equiv\ -b\ (mod\ q)\\ (or\ equivalently\ a\equiv\ -b\ (mod\ p)\ and\ \ a\equiv\ b\ (mod\ q)) \end{array}
```

* therefore, $p \mid (a-b) \text{ i.e. } gcd(a-b, n) = p \text{ (ex. } gcd(15-29, 77)=7)$ $q \mid (a+b) \text{ i.e. } gcd(a+b, n) = q \text{ (ex. } gcd(15+29, 77)=11)$

29

31

Quadratic Residues

- ♦ Consider $y \in \mathbb{Z}_n^*$, if $\exists x \in \mathbb{Z}_n^*$, such that $x^2 \equiv y \pmod{n}$, then y is called a quadratic residue mod n, i.e. $y \in \mathbb{QR}_n$
- \Rightarrow If the modulus is a prime number p, there are (p-1)/2 quadratic residues in \mathbb{Z}_p^*
 - * let g be a primitive root in Z_p^* , $\{g, g^2, g^3, ..., g^{p-1}\}$ is a permutation of $\{1, 2, ..., p-1\}$
 - * in the above set, $\{g^2, g^4, ..., g^{p-1}\}$ are quadratic residues (QR_p)
 - * $\{g, g^3, ..., g^{p-2}\}$ are quadratic non-residues (QNR_p), out of which there are $\phi(p-1)$ primitive roots

Quadratic Residues in Z_p^*

1st proof:

- * For each $x \in \mathbb{Z}_p^*$, $p-x \neq x \pmod{p}$ (since if x is odd, p-x is even), it's clear that x and p-x are both square roots of a certain $y \in \mathbb{Z}_p^*$,
- **★** Because there are only p-1 elements in Z_p^* , we know that $|QR_p| \le (p-1)/2$
- *Because | $\{g^2, g^4, ..., g^{p-1}\}\ | = (p-1)/2$, there can be no more quadratic residues outside this set. Therefore, the set $\{g, g^3, ..., g^{p-2}\}$ contains only quadratic non-residues

Quadratic Residues in Z_p^*

2nd proof:

- * Because the squares of x and p-x are the same, the number of quadratic residues must be less than p-1 (i.e. some element in Z_p* must be quadratic non-residue)
- * Consider this set $\{g, g^3, ..., g^{p-2}\}\$ directly
- * If $g \in QR_p$, then g cannot be a primitive (because g^k must all be quadratic residues)
- * If $g^{2k+1}\equiv g^{2k}\cdot g\in QR_p$, then there exists an $x\in Z_p^*$ such that $x^2\equiv g^{2k}\cdot g\ (mod\ p)$
- * Because $gcd(g^{2k}, p)=1$, $g\equiv x^2\cdot (g^{2k})^{-1}\equiv (x\cdot (g^{-1})^k)^2\in QR_p$ contradiction
- * i.e. $g^{2k+1} \in QNR_p$

 $(g^{2k})^{-1}(g^{2k}) \equiv (g^{2k})^{-1}g \cdot g \cdot \dots \cdot g \equiv 1 \pmod{p}$ $\Rightarrow (g^{2k})^{-1} \equiv g^{-1} \cdot g^{-1} \cdot \dots \cdot g^{-1} \equiv (g^{-1})^{2k} \equiv ((g^{-1})^k)^2$

30

Quadratic Residues in Z_p^*

$$\Rightarrow$$
 ex. $p=143537$, $p-1=143536=2^4 \cdot 8971$,
 $\phi(p-1)=2^4 \cdot 8971 \cdot (1-1/2) \cdot (1-1/8971)=71760$ primitives,

$$(p-1)/2=71768 \text{ QR}_{p}$$
's and 71768 QNR_{p} 's

- * Note: if g is a primitive, then g^3, g^5 ... are also primitives except the following 8 numbers $g^{8971}, g^{8971 \cdot 3}, \dots g^{8971 \cdot 15}$
- \star Elements in Z_p^* can be classified further according to their order

ord _p (x)	sir p-1	<u>ce</u> 1√ 2	$\left(\frac{\mathbf{x} \in \mathbf{Z}}{4} \right)$	* <u>p</u> -9r	d _p (x ₁) 16	p _p _l ₁ , v 8971	ve <u>βa</u> n li 8971·2	st <u>all</u> po 8971·4	ssi <u>þ</u> le or 8971·8	ders 1 8971·16
	QNR _p	QR _p	QR _p	QR _p	QR _p	QNR _p	QR_p	QR_p	QR_p	QR_p
#	φ(<i>p</i> -1)					8				

3

Legendre Symbol

- \diamond Legendre symbol L(a, p) is defined when a is any integer, p is a prime number greater than 2
 - * $L(a, p) = 0 \text{ if } p \mid a$
 - * L(a, p) = 1 if a is a quadratic residue mod p
 - * L(a, p) = -1 if a is a quadratic non-residue mod p
- ♦ Two methods to compute (a/p)
 - \star (a/p) = a^{(p-1)/2} (mod p)
 - * recursively calculate by $L(a \cdot b, p) = L(a, p) \cdot L(b, p)$
 - 1. If a = 1, L(a, p) = 1
 - 2. If a is even, $L(a, p) = L(a/2, p) \cdot (-1)^{(p^2-1)/8}$
 - 3. If a is odd prime, $L(a, p) = L((p \text{ mod } a), a) \cdot (-1)^{(a-1)(p-1)/4}$

Composite Quadratic Residues

 \diamond If y is a quadratic residue modulo n, it must be a quadratic residue modulo all prime factors of n.

$$\exists x \in Z_n^* \text{ s.t. } x^2 \equiv y \pmod{n} \Leftrightarrow x^2 = k \cdot n + y = k \cdot p \cdot q + y$$
$$\Rightarrow x^2 \equiv y \pmod{p} \text{ and } x^2 \equiv y \pmod{q}$$

 \diamond If y is a quadratic residue modulo p and also a quadratic residue modulo q, then y is a quadratic residue modulo n.

$$\exists r_1 \in Z_p^* \text{ and } r_2 \in Z_q^* \text{ such that}$$

$$y \equiv r_1^2 \pmod{p} \equiv (r_1 \bmod{p})^2 \pmod{p}$$

$$\equiv r_2^2 \pmod{q} \equiv (r_2 \bmod{q})^2 \pmod{q}$$
from CRT, $\exists ! \ r \in Z_n^* \text{ such that } r \equiv r_1 \pmod{p} \equiv r_2 \pmod{q}$
therefore, $y \equiv r^2 \pmod{p} \equiv r^2 \pmod{q}$
again from CRT, $y \equiv r^2 \pmod{p}$

34

Legendre Symbol

$$y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$$

 (\Rightarrow)

- * If $y \in QR_p$
- * Then $\exists x \in \mathbb{Z}_p^*$ such that $y \equiv x^2 \pmod{p}$
- * Therefore, $y^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{(p-1)} \equiv 1 \pmod{p}$

 (\Leftarrow)

- * If $y \notin QR_p$ i.e. $y \in QNR_p$
- * Then $y \equiv g^{2k+1} \pmod{p}$
- * Therefore, $y^{(p-1)/2} \equiv (g^{2k} \cdot g)^{(p-1)/2} \equiv g^{k(p-1)} g^{(p-1)/2} \equiv g^{(p-1)/2} \not\equiv 1 \pmod{p}$

$$\operatorname{ord}_{p}(g) = p-1$$

Jacobi Symbol

- → Jacobi symbol J(a, n) is a generalization of the Legendre symbol to a composite modulus n
- ♦ If n is a prime, J(a, n) is equal to the Legendre symbol i.e. $J(a, n) \equiv a^{(n-1)/2} \pmod{n}$
- ⇒ Jacobi symbol can not be used to determine
 whether a is a quadratic residue mod n (unless n
 is a prime)
 - ex. $J(7, 143) = J(7, 11) \cdot J(7, 13) = (-1) \cdot (-1) = 1$ however, there is no integer x such that $x^2 \equiv 7 \pmod{143}$

37

QR_n and Jacobi Symbol

 \diamond Consider $n = p \cdot q$, where p and q are prime numbers

$$\forall x \in \mathbb{Z}_n^*, x \in \mathbb{QR}_n$$

$$\Leftrightarrow x \in QR_n \text{ and } x \in QR_a$$

$$\Leftrightarrow$$
 J(x, p) = $x^{(p-1)/2} \equiv 1 \pmod{p}$ and J(x, q) = $x^{(q-1)/2} \equiv 1 \pmod{q}$

$$\Rightarrow$$
 J(x, n) = J(x, p) · J(x, q) = 1

	J(x, p)	J(x, q)	J(x, n)	
Q_{00}	1	1	1	$x \in QR_n$
Q_{01}	1	-1	-1	$x \in QNR_n$
Q_{10}	-1	1	-1	$x \in QNR_n$
Q_{11}	-1	-1	1	$x \in QNR_n$

Calculation of Jacobi Symbol

- ♦ The following algorithm computes the Jacobi symbol J(a, n), for any integer a and odd integer n, recursively:
 - * Def 1: J(0, n) = 0 also If n is prime, J(a, n) = 0 if n|a
 - * Def 2: If n is prime, J(a, n) = 1 if $a \in QR_n$ and J(a, n) = -1 if $a \notin QR_n$
 - * Def 3: If n is a composite, $J(a, n) = J(a, p_1 \cdot p_2 \dots \cdot p_m) = J(a, p_1) \cdot J(a, p_2) \dots \cdot J(a, p_m)$
 - * Rule 1: J(1, n) = 1
 - * Rule 2: $J(a \cdot b, n) = J(a, n) \cdot J(b, n)$
 - * Rule 3: J(2, n) = 1 if $(n^2-1)/8$ is even and J(2, n) = -1 otherwise
 - * Rule 4: $J(a, n) = J(a \mod n, n)$
 - * Rule 5: J(a, b) = J(-a, b) if a < 0 and (b-1)/2 is even, J(a, b) = -J(-a, b) if a < 0 and (b-1)/2 is odd
 - * Rule 6: $J(a, b_1 \cdot b_2) = J(a, b_1) \cdot J(a, b_2)$
 - * Rule 7: if gcd(a, b)=1, a and b are odd
 - \Rightarrow 7a: J(a, b) = J(b, a) if (a-1)·(b-1)/4 is even
 - \Rightarrow 7b: J(a, b) = -J(b, a) if (a-1)·(b-1)/4 is odd

38

Wilson's Theorem

$$(p-1)! \equiv -1 \pmod{p}$$

Proof:

Goal: $(p-1)! \equiv 1 \cdot 2 \cdot 3 \cdot \cdots (p-1) \equiv -1 \equiv (p-1) \pmod{p}$

- * Since gcd(p-1, p) = 1, the above is equivalent to $(p-2)! \equiv 1 \pmod{p}$
- * e.g. p = 5, $3 \cdot 2 \cdot 1 \equiv 1 \pmod{5}$

$$p = 7$$
, $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \equiv 1 \pmod{7}$

- * We know that $1^{-1} \equiv 1 \pmod{p}$ and $(-1)^{-1} \equiv -1 \pmod{p}$
- * Claim: $\forall i \in \mathbb{Z}_{p}^{*} \setminus \{1,-1\}, i^{-1} \neq i \text{ (pf: if } i^{-1} \neq i \text{ then } i^{2} \equiv 1, i \in \{1,-1\})$
- * Claim: $\forall i_1 \neq i_2 \in \mathbb{Z}_p^* \setminus \{1,-1\}, i_1^{-1} \neq i_2^{-1} \text{ (pf: if } i_1^{-1} \equiv i_2^{-1} \text{ then } i_1 \cdot i_2^{-1} \equiv 1 \text{ i.e. } i_1 \equiv i_2, \text{ contradiction)}$
- * Out of the set $\{2, 3, \dots p-2\}$, we can form (p-3)/2 pairs such that $i \cdot j \equiv 1 \pmod{p}$, multiply them together, we obtain $(p-2)! \equiv 1$

Another Proof

 $y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$

 (\Rightarrow)

- * If $y \in QR_p$
- * Then $\exists x \in \mathbb{Z}_p^*$ such that $y \equiv x^2 \pmod{p}$
- * Therefore, $y^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{(p-1)} \equiv 1 \pmod{p}$

 (\Leftarrow)

- * Since $\forall i \in \mathbb{Z}_p^*$, $\gcd(i, p)=1$, $\exists j \text{ such that } i \cdot j \equiv y \pmod{p}$
- **★** If $y \notin QR_p$, the congruence $x^2 \equiv y \pmod{p}$ has no solution, therefore, $j \neq i \pmod{p}$
- ★ We can group the integers 1, 2, ..., p-1 into (p-1)/2 pairs (i, j), each satisfying $i \cdot j \equiv y \pmod{p}$
- * Multiply them together, we have $(p-1)! \equiv y^{(p-1)/2} \pmod{p}$
- * From Wilson's theorem, $y^{(p-1)/2} \equiv -1 \pmod{p}$

41

Order q Subgroup G_q of Z_p^*

- \diamond Let p be a prime number, g be a primitive in Z_n^*
- \Leftrightarrow Let $p = k \cdot q + 1$ i.e. $q \mid p-1$ where q is also a prime number
- \Rightarrow Let $G_0 = \{g^k, g^{2k}, ..., g^{q+k} \equiv 1\}$
- ♦ Is G_q a subgroup in Z_p^* ? YES $\forall x, y \in G_q$, it is clear that $z \equiv g^{i+k} \equiv x \cdot y \equiv g^{(i_1+i_2)+k} \pmod{p}$ is also in G_q , where $i \equiv i_1 + i_2 \pmod{q}$
- ♦ Is the order of the subgroup G_q q? YES $\forall i_1, i_2 \in Z_q, i_1 \neq i_2, \ g^{i_1 + k} \neq g^{i_2 + k} \pmod{p}$ otherwise g is not a primitive in Z_p^* , also $g^{q+k} \equiv 1 \pmod{p}$
- \Rightarrow How many generators are there in G_q ? $\phi(q)=q-1$ a. there are $\phi(p-1)$ generators in $Z_s^*=\{g^1, g^2, ..., g^x, ...\}$
 - a. there are $\phi(p-1)$ generators in $Z_p^* = \{g^1, g^2, ..., g^x, ..., g^{p-1}\}$, since gcd(p-1, x) = d > 1 implies that $ord_p(g^x) = (p-1)/d$

Exactly Two Square Roots

Every $y \in QR_p$ has exactly two square roots i.e. x and p-x such that $x^2 \equiv y \pmod{p}$

pf: $\star QR_p = \{g^2, g^4, ..., g^{p-1}\}, |Z_p^*| = p-1, \text{ and } |QR_p| = (p-1)/2$

- * For each $y = g^{2k}$ in QR_p , there are at least two distinct $x \in Z_p^*$ s.t. $x^2 = y \pmod{p}$, i.e., g^k and $p g^k$ (if one is even, the other is odd)
- * Since $|QR_p| = (p-1)/2$, we can obtain a set of p-1 square roots $S = \{g, p-g, g^2, p-g^2, ..., g^{(p-1)/2}, p-g^{(p-1)/2}\}$
- * Claim: the elements of S are all distinct (1. $g^i \neq g^j \pmod{p}$) when $i\neq j$ since g is a primitive, 2. $g^i \circledast g^j \pmod{p}$ when $i\neq j$, otherwise $(g^i+g^j)(g^i-g^j)\equiv g^{2i}-g^{2j}\equiv 0 \pmod{p}$ implies $i\equiv j \pmod{(p-1)/2}$, 3. $g^i\neq -g^i \pmod{p}$ since if one is even, the other is odd)
- * If there is one more square root z of $y \equiv g^{2k}$ which is not g^k and $-g^k$, it must belong to S (which is Z_p^*), say g^j , $j \neq k$, which would imply that $g^{2j} \equiv g^{2k} \pmod{p}$, and leads to contradiction

42

Order q Subgroup G_q (cont'd)

also $(g^x)^y \equiv 1 \pmod{p}$ and $g^{p-1} \equiv 1 \pmod{p}$ implies that either $x \cdot y \mid p-1 \text{ or } p-1 \mid x \cdot y, \gcd(x, p-1) = 1$ implies that $p-1 \mid y$ therefore, $\operatorname{ord}_p(g^x) = p-1$

- b. there are $\phi(q)$ primitives in $G_q = \{g^k, g^{2k}, ..., g^{q+k} \equiv 1\}$ since q is also a prime number
- \diamond Is G_q a unique order q subgroup in ${Z_p}^*$? YES

Let S be an order-q cyclic subgroup, $S=\{g,g^2,...,g^q\equiv 1\}$. Since p is prime, \exists a unique k-th root $g_1\in Z_p^*$, s.t. $g\equiv g_1^k\pmod p$ Let $g_1\neq g$ be another primitive, clearly $g_1\equiv g^s\pmod p$, Is the set $S=\{g_1^k,g_1^{2k},...,g_1^{q+k}\equiv 1\}$ different from G_q ? let $x\in S$, i.e. $x\equiv g_1^{i_1\cdot k}\pmod p$, $i_1\in Z_q$ $x\equiv g_1^{i_1\cdot k}\equiv g^{s\cdot i_1\cdot k}\equiv g^{i\cdot k}\pmod p$ where $i\equiv s\cdot i_1\pmod q$, i.e. $S\subseteq G_q$ The proof is similar for $G_q\subseteq S$. Therefore, $S=G_q$

Gauss' Lemma

Lemma: let p be a prime, a is an integer s.t. gcd(a, p)=1, define $\alpha_i \equiv j \cdot a \pmod{p}$ _{j=1,...,(p-1)/2}, let n be the number of α_i 's s.t. $\alpha_i > p/2$ then $L(a, p) = (-1)^n$ pf.

- $\star \alpha_i \in \{r_1, ..., r_n\} \text{ if } \alpha_i > p/2 \text{ and } \alpha_i \in \{s_1, ..., s_{(p-1)/2-n}\} \text{ if } \alpha_i < p/2$
- * Since gcd(a, p)=1, r_i and s_i are all distinct and non-zero
- * Clearly, $0 < p-r_i < p/2$ for i=1,...,n
- * no p- r_i is an s_i : if p- $r_i = s_i$ then $s_i = -r_i \pmod{p}$ rewrite in terms of a: $u = v \pmod{p}$ where $1 \le u, v \le (p-1)/2$ \Rightarrow u = -v (mod p) where $1 \le u, v \le (p-1)/2 \Rightarrow$ impossible
- \Rightarrow {s₁, ..., s_{(p-1)/2-n}, p-r₁, ..., p-r_n} is a reordering of {1, 2,..., (p-1)/2}
- * Thus, $((p-1)/2)! \equiv s_1 \cdots s_{(p-1)/2-n} \cdot (-r_1) \cdots (-r_n) \equiv (-1)^n s_1 \cdots s_{(p-1)/2-n} \cdot r_1 \cdots r_n$ $\equiv (-1)^n ((p-1)/2)! \ a^{(p-1)/2} \pmod{p} \implies L(a, p) = (-1)^n$

Theorem:
$$J(2, p) = (-1)^{(p^2-1)/8}$$

Theorem: let p be a prime, gcd(a, p) = 1 then $L(a, p) = (-1)^t$ where $t = \sum_{i=1}^{(p-1)/2} \lfloor j \cdot a/p \rfloor$. Also $L(2, p) = (-1)^{(p^2-1)/8}$

where
$$t = \sum_{j=1}^{(p-1)/2} \lfloor j \cdot a/p \rfloor$$
. Also $L(2, p) = (-1)^{(p^2-1)/2}$

pf.

- * $\alpha_i \in \{r_1, ..., r_n\}$ if $\alpha_i > p/2$ and $\alpha_i \in \{s_1, ..., s_{(p-1)/2-n}\}$ if $\alpha_i < p/2$
- * $\mathbf{i} \mathbf{a} = \mathbf{p} \begin{bmatrix} \mathbf{j} \cdot \mathbf{a} / \mathbf{p} \end{bmatrix} + \alpha_i$ for $\mathbf{j} = 1, ..., (\mathbf{p} 1) / 2$

$$\Rightarrow \sum_{j=1}^{(p-1)/2} \! j \ a = \sum_{j=1}^{(p-1)/2} p \left\lfloor j \! \cdot \! a/p \right\rfloor + \sum_{j=1}^n r_j + \sum_{j=1}^{(p-1)/2-n} s_j$$

* $\{s_1, ..., s_{(p-1)/2-n}, p-r_1, ..., p-r_n\}$ is a reordering of $\{1, 2, ..., (p-1)/2\}$

$$\Rightarrow \sum_{j=1}^{(p-1)/2} j = \sum_{j=1}^{n} (p-r_j) + \sum_{j=1}^{(p-1)/2-n} s_j = np - \sum_{j=1}^{n} r_j + \sum_{j=1}^{(p-1)/2-n} s_j$$

* Subtracting the above two equations, we have

$$(a-1)^{\sum_{j=1}^{(p-1)/2}} j = p \left(\sum_{j=1}^{(p-1)/2} \lfloor j \cdot a/p \rfloor - n \right) + 2 \sum_{j=1}^{n} r_{j}$$

$J(2, p) = (-1)^{(p^2-1)/8}$ (cont'd)

- * $\sum_{j=1}^{(p-1)/2} j = 1 + ... + (p-1)/2 = (p-1)/2 (1 + (p-1)/2) / 2 = (p^2-1)/8$
- * Thus, we have (a-1) $(p^2-1)/8 \equiv \sum_{j=1}^{(p-1)/2} \lfloor j \cdot a/p \rfloor n \pmod{2}$
- * If a is odd, $n = \sum_{i=1}^{(p-1)/2} \lfloor j \cdot a/p \rfloor$
- * If a = 2, $\lfloor j \cdot 2/p \rfloor = 0$ for j=1, ..., (p-1)/2, $n \equiv (p^2-1)/8 \pmod{2}$ therefore, $J(2, p) = (-1)^{(p^2-1)/8}$

Lemma. ord-k elements in $Z_p^* \le \phi(k)$

<u>Lemma</u>. There are at most $\phi(k)$ ord-k elements in Z_p^* , $k \mid p-1$ pf.

- $Arr Z_p^*$ is a field $\Rightarrow x^k-1 \equiv 0 \pmod{p}$ has at most k roots
- \Leftrightarrow if \boldsymbol{a} is a nontrivial root $(\boldsymbol{a}\neq 1)$, then $\{\boldsymbol{a}^0,\boldsymbol{a}^1,\boldsymbol{a}^2,...,\boldsymbol{a}^{k-1}\}$ is the set of the k distinct roots.
- \Rightarrow In this set, those a^{ℓ} with $gcd(\ell, k) = d > 1$ have order at most k/d.
- \diamond Only those a^{ℓ} with $gcd(\ell, k) = 1$ might have order k.
- \diamond Hence, there are at most $\phi(k)$ elements (out of k elements) that have order equal to k.

Lemma. $\Sigma_{k|p-1} \phi(k) = p-1$

$$\underline{\textbf{Lemma}}.\ \Sigma_{k|p-1}\ \phi(k) = p-1$$

pf.

$$\begin{aligned} p\text{-}1 &= \Sigma_{k|p\text{-}1} \ (\# \ a \ in \ Z_p^* \ s.t. \ gcd(a,p\text{-}1) = k) \\ &= \Sigma_{k|p\text{-}1} \ (\# \ b \ in \ \{1,\ldots,(p\text{-}1)/k\} \ s.t. \ gcd(b, (p\text{-}1)/k) = 1) \\ &= \Sigma_{k|p\text{-}1} \ \varphi((p\text{-}1)/k) \\ &= \Sigma_{k|p\text{-}1} \ \varphi(k) \end{aligned}$$

4

Generators in QR_n

- $\begin{array}{l} \Leftrightarrow \mbox{ Number of generators in } Z_p^{\ *} \colon \varphi(p\text{-}1) \\ \mbox{ Let g be a primitive, } Z_p^{\ *} = < g> = \{g, \, g^2, \, g^3, \, ..., \, g^k, \, ..., \, g^{p\text{-}1}\} \\ \mbox{ if $\gcd(k, \, p\text{-}1) = d \neq 1$ then g^k is not a primitive} \\ \mbox{ since } (g^k)^{(p\text{-}1)/d} = (g^{k/d})^{p\text{-}1} = 1, \mbox{ i.e. ord}_p(g^k) \leq (p\text{-}1)/d \\ \mbox{ if $\gcd(k, \, p\text{-}1) = 1$ and g^k is not a primitive, then $d\text{=}ord_p(g^k) < p\text{-}1$, i.e.} \\ \mbox{ } (g^k)^d = 1; \mbox{ g is a primitive} \Rightarrow p\text{-}1 \mid k \ d \Rightarrow p\text{-}1 \mid d \ contradiction.} \end{array}$
- ♦ Z_n^* is not a cyclic group (n = p q, p=2p'+1, q=2q'+1, λ (n)=2p'q') Since $x^{\lambda(n)} \equiv 1 \pmod{n}$, there is no generator that can generate all members in Z_n^*
- $$\begin{split} & \Leftrightarrow \ QR_n \ is \ a \ cyclic \ group \ of \ order \ \lambda(n)/2 = lcm(p-1, \ q-1)/2 = \ p' \ q' \\ & \forall \ x \in Z_n^{\ *}, \ x^{\lambda(n)} \equiv 1 \ (mod \ n) \quad Carmichael's \ Theorem \\ & clearly, \ (x^2)^{\lambda(n)/2} \equiv 1 \ (mod \ n), \ QR_n = \{x^2 \mid \forall \ x \in Z_n^{\ *}\} \\ & i.e. \ \forall \ y \in QR_n, \ ord_n(y) \mid p' \ q' \quad (ord_n(y) \in \{1, \ p', \ q', \ p'q'\}) \end{split}$$

Z_p* is a cyclic group

Theorem: Z_p^* is a *cyclic* group for a prime number p pf.

Lemma 1: # of ord-k elements in $Z_p^* \le \phi(k)$, where $k \mid p-1$

Lemma 2: $\Sigma_{k|p-1} \phi(k) = p-1$

The order k of every element in Z_p^* divides p-1

- $\Rightarrow \sum_{k|p-1}$ (# of elements with order k) = p-1
- $\Rightarrow \sum_{k|p-1} \phi(k) \ge p-1$, combined with lemma 2, we know that # of ord-k elements in $Z_p^* = \phi(k)$
- \Rightarrow # of ord-(p-1) elements in $Z_p^* = \phi(p-1) > 1$
- \Rightarrow There is at least one generator in Z_p^* , i.e. Z_p^* is cyclic

Ex. p=13, p-1 =
$$|\{1,5,7,11\}| + |\{2,10\}| + |\{3,9\}| + |\{4,8\}| + |\{6\}|$$

 $k=1$
 $k=2$
 $k=3$
 $k=4$
 $k=6$

50

Generators in QR_n (cont'd)

cyclic?
$$\exists x^* \in Z_n^* \text{ ord}_n(x^*) = \lambda(n) = 2 \text{ p' } q' \Rightarrow \\ \exists y^* (=(x^*)^2) \in QR_n \text{ s.t. } \text{ ord}_n(y^*) = \lambda(n)/2 = p' q'$$

♦ Let y be a random element in QR_n, the probability that y is a generator is close to 1

Let y^* be a generator of QR_n ,

$$\begin{split} QR_n = & <\!\!y^*\!\!> = \{y^*, (y^*)^2, (y^*)^3, ..., (y^*)^k, ..., (y^*)^{p'q'}\} \\ \text{if } \gcd(k, p'q') = d \neq 1 \text{ then } (y^*)^k \text{ is not a generator} \\ \text{since } ((y^*)^k)^{p'q'/d} = ((y^*)^{k/d})^{p'q'} = 1, \text{ i.e. } \operatorname{ord}_p((y^*)^k) \leq (p'q')/d \\ \varphi(p'q') = \varphi(p') \ \varphi(q') = (p'-1)(q'-1) = p'q' - p' - q' + 1 \\ = p'q' - (p'-1) - (q'-1) - 1 \\ \forall \ x \in \{(y^*)^{q'}, (y^*)^{2q'}, ..., (y^*)^{(p'-1)q'}\} \ \operatorname{ord}_n(x) = p' \\ \forall \ x \in \{(y^*)^{p'}, (y^*)^{2p'}, ..., (y^*)^{(q'-1)p'}\} \ \operatorname{ord}_n(x) = q' \\ \operatorname{ord}_n(1) = 1 \end{split}$$

 $Pr\{x \text{ is a generator } | x \in_R QR_n\} = \phi(p'q') / (p'q') \text{ is close to } 1$

Subgroups in Z_n^*

Consider
$$n = p \ q$$
, $p=2p'+1$, $q=2q'+1$, $m=p'q'$, $\lambda(n) = lcm(p-1, q-1)=2m$, $\phi(n) = (p-1)(q-1) = 4m$

- $\diamond \mathbf{Z_n}^*$ is not a cyclic group
 - * Carmichael's theorem asserts that no element in Z_n^* can generate all elements in Z_n^* . (maximum order is 2m instead of 4m)
 - * However, Z_n^* is still a group over modulo n multiplication.
- \Rightarrow **QR**_n is a <u>cyclic</u> subgroup of order $m = \lambda(n)/2$, QR_n = $\{x^2 \mid \forall x \in Z_n^*\}$
 - * $J_{00} = \{x \in Z_n^* \mid J(x,p)=1 \text{ and } J(x,q)=1\}$
 - * If there exists an element in Z_n^* whose order is 2m, then QR_n is clearly a cyclic group. (Will the precondition be true?)
 - * $\forall x \in Z_n^* x^{2m} \equiv 1 \pmod{n}$ implies that $\forall y \in QR_n \text{ ord}_n(y) \mid p'q'$ i.e. $\text{ord}_n(y)$ is either 1, p', q', or p'q' (if there is one y s.t. $\text{ord}_n(y) = m$ then y is a generator and QR_n is cyclic). Let's construct one.

Subgroups in Z_n^* (cont'd)

7.
$$k=p'q': \Rightarrow g^{p'q'} \equiv g_1^{p'q'} \equiv 1 \pmod{p}$$

 $since \ g_1^{2p'} \equiv 1 \pmod{p}$ and $gcd(q', 2) = 1 \Rightarrow \exists \ a, b \ s.t. \ a \ q' + b \ 2 = 1$
 $\Rightarrow g_1^{p'} \equiv g_1^{p' (a \ q' + b \ 2)} \equiv (g_1^{p' \ q'})^a (g_1^{2 \ p'})^b \equiv 1 \pmod{p}$
 $contradict \ with \ ord_p(g_1) = 2p'$
1~7 implies that $ord_n(g) = 2p'q'$, i.e. $QR_o = \{g^2, g^4, ..., g^{p'q'}\}$

 $1 \sim 7$ implies that $\operatorname{ord}_n(g) = 2p'q'$, i.e. $QR_o = \{g^2, g^4, ..., g^{p'q'}\}$ and QR_n is a cyclic group.

- * Pr{Elements in QR_n being a generator} = $\phi(p'q') / (p'q')$
- \Rightarrow J_n is a <u>cyclic</u> subgroup of order $2m = \lambda(n)$, $J_n = \{x \in Z_n^* \mid J(x,n)=1\}$
 - * $J_{11} = \{x \in Z_n^* \mid J(x,p)=-1 \text{ and } J(x,q)=-1\}$
 - **★** The above proof also shows that $J_n = \{g, g^2, ..., g^{2p'q'}\}$ is cyclic

55

- * Pr{Elements in J_n being a generator} = $\phi(p'q') / (2p'q')$
- \Rightarrow $\mathbf{J}_{01} \cup \mathbf{J}_{10} = \mathbf{Z}_n^* \setminus \{\mathbf{J}_{00} \cup \mathbf{J}_{11}\}$ is not a subgroup in \mathbf{Z}_n^*
 - * if $x \in J_{01}$ then $x * x \in J_{00}$

Subgroups in Z_n^* (cont'd)

```
Let g_1 be a generator in Z_p^*, and g_2 be a generator in Z_q^*

Let g \equiv g_1 \pmod{p} \equiv g_2 \pmod{q}, (note that J(g, n) = 1, g \in J_{11})

g^{p-1} \equiv g^{2p'} \equiv g_1^{2p'} \equiv 1 \pmod{p}, g^{q-1} \equiv g^{2q'} \equiv g_2^{2q'} \equiv 1 \pmod{q}

\Rightarrow g^{2p'q'} \equiv 1 \pmod{p} and g^{2q'p'} \equiv 1 \pmod{q} i.e. g^{2p'q'} \equiv 1 \pmod{n}

if there exists a k \in \{1, 2, p', q', 2p', 2q', p'q'\} s.t. g^k \equiv 1 \pmod{n}

then \operatorname{ord}_n(g) is not 2p'q'

1. k=1: \Rightarrow g_1 \equiv 1 \pmod{p} contradict with \operatorname{ord}_p(g_1) = p-1

2. k=p': \Rightarrow g^{p'} \equiv g_1^{p'} \equiv 1 \pmod{q} contradict with \operatorname{ord}_p(g_1) = 2p'

3. k=q': \Rightarrow g^{q'} \equiv g_2^{q'} \equiv 1 \pmod{q} contradict with \operatorname{ord}_q(g_2) = 2q'

4. k=2: \Rightarrow g_1^2 \equiv 1 \pmod{p} contradict with \operatorname{ord}_q(g_1) = p-1

5. k=2p': \Rightarrow g^{2p'} \equiv g_2^{2p'} \equiv 1 \pmod{q} contradict with \operatorname{ord}_q(g_2) = 2q'

6. k=2q': \Rightarrow g^{2q'} \equiv g_1^{2q'} \equiv 1 \pmod{p} contradict with \operatorname{ord}_q(g_1) = 2p'
```

54

Generator in QR_n

```
\Rightarrow n = p q, p=2p'+1, q=2q'+1
```

- ♦ Find a generator in QR_n
 - 1. Find a generator g_1 of Z_p^* (i.e. $Z_p^* = \langle g_1 \rangle$) and g_2 of Z_q^* (i.e. $Z_q^* = \langle g_2 \rangle$)
 - 2. Calculate the generator $h_1 \equiv g_1^2 \pmod{p}$ of QR_p and $h_2 \equiv g_2^2 \pmod{1}$ of QR_q
 - 3. Let $h \equiv h_1 \pmod{p} \equiv h_2 \pmod{q}$.

It is clear that $h \equiv g^2 \pmod{n}$, i.e. $h \in QR_n$, where $g \equiv g_1 \pmod{p} \equiv g_2 \pmod{q}$.

Claim: h is a generator of QR_n

$$\begin{array}{l} \text{f.} \\ y \in QR_n \Rightarrow y \in QR_p \text{ and } y \in QR_q \\ \text{i.e. } \exists \ x_1 \in Z_{p'} \text{ and } x_2 \in Z_{q'} \text{ , } y \equiv h_1^{\ x_1} (\text{mod } p) \equiv h_2^{\ x_2} (\text{mod } q) \\ \Rightarrow y \equiv g_1^{\ 2 \ x_1} (\text{mod } p) \equiv g_2^{\ 2 \ x_2} (\text{mod } q) \\ \Rightarrow y \equiv g^{\ 2 \ x} (\text{mod } n) \text{ if } 2 \ x \equiv 2 \ x_1 (\text{mod } p\text{-}1) \equiv 2 \ x_2 (\text{mod } q\text{-}1) \\ \text{a unique } x \in Z_{p'q'} \text{ exists by CRT since } \gcd(p\text{-}1, q\text{-}1) = \gcd(2p', 2q') = 2 \\ \Rightarrow y \equiv h^x (\text{mod } n) \end{array}$$

Generate Elements in Z_n^*

- Z_n^* is NOT a cyclic group (n = p q, p=2p'+1, q=2q'+1, m=p' q')
- \diamond How do we generate random elements in Z_n^* ?

$$Z_n^* = \{ g^a u^{-e b_1} (-1)^{b_2} | g \text{ is a generator in } QR_n, gcd(e, \phi(n)) = 1, \\ u \in_R Z_n^* \text{ and } J(u,n) = -1, \\ a \in \{0, \dots, m-1\}, b_1 \in \{0,1\}, \text{ and } b_2 \in \{0,1\} \}$$

Note: 1. J(-1, n) = 1 and $-1 \in J_n \setminus QR_n$ since $(-1)^{(p-1)/2} \equiv (-1)^{p'} \equiv -1 \pmod{p}$ 2. e is odd, $\phi(n)$ -e is also odd, $J(u^{-e}, n) = J(u, n) = -1$

- ♦ We can view the above as 4 parts
 - 1. $J_{00}(QR_n)$: $b_1 = b_2 = 0$, $J_{00} = \{g^a \mid a \in \{0,...,m-1\}\}$
 - $2.\ J_{11}\ (J_{n}\backslash QR_{n})\!\!:b_{1}=0,\ b_{2}=1,\ J_{11}=\{-g^{a}\ |\ a\!\in\!\{0,\ldots,m\text{-}1\}\}$

Assume that J(u, p) = -1 and J(u, q) = 1

- 3. J_{01} : $b_1 = 1$, $b_2 = 0$, $J_{01} = \{g^a u^{-e} \mid a \in \{0, ..., m-1\}\}$
- 4. J_{10} : $b_1 = 1$, $b_2 = 1$, $J_{01} = \{-g^a u^{-e} \mid a \in \{0, ..., m-1\}\}$

57

58

- - * proof sketch: divide G into left cosets H equivalence classes, and show that they have the same size.
- ♦ It implies that: the order of any element a of a finite group (i.e. the smallest positive integer number k with $a^k = 1$) divides the order of the group. Since the order of a is equal to the order of the cyclic subgroup generated by a. Also, $a^{|G|} = 1$ since order of a divides |G|.