

Prime Number Theorem

Prime Nu be eo ^e Number Theorem:

- \star Let $\pi(x)$ be the number of primes less than x
- \ast Then \ast

$$
\pi(x) \approx \frac{x}{\ln x}
$$

in the sense that the ratio $\pi(x) / (x/\ln x) \rightarrow 1$ as $x \rightarrow \infty$

★ Also, π(x) ≥
$$
\frac{x}{\ln x}
$$
 and for x≥17, π(x) ≤ 1.10555 $\frac{x}{\ln x}$

 \div Ex: number of 100-digit primes

$$
\pi(10^{100}) - \pi(10^{99}) \approx \frac{10^{100}}{\ln 10^{100}} - \frac{10^{99}}{\ln 10^{99}} \approx 3.9 \times 10^{97}
$$

Prime Numbers

- **Prime number**: an integer p>1 that is divisible only by 1 and itself, ex. 2, 3,5, 7, 11, 13, 17…
- \Diamond **Composite number**: an integer n>1 that is not prime
- **Fact**: there are infinitely many prime numbers. (by Euclid)
	- pf: \ast on the contrary, assume a_n is the largest prime number \triangle let the finite set of prime numbers be $\{a_0, a_1, a_2, \ldots, a_n\}$ \ast the number b = a_0 $\ast a_1$ $\ast a_2$ $\ast ... \ast a_n$ + 1 is not divisible by any a_i i.e. b does not have prime factors $\le a_n$
	- 2 cases: \triangleright if b has a prime factor d, b>d> a_n, then "d is a prime number that is larger than a_n " ... contradiction
		- \triangleright if b does not have any prime factor less than b, then "b is a $\overline{2}$ prime number that is larger than a_n " ... contradiction

Factors

- \Diamond Every composite number can be expressible as a product a b of integers with $1 \le a, b \le n$
- \Diamond Every positive integer has a unique representation as a product of prime numbers raised to different powers.

 \ast Ex. 504 = $2^3 \cdot 3^2 \cdot 7$, 1125 = $3^2 \cdot 5^3$

3

Factors

 \Diamond Lemma: p is a prime number and p | a \Rightarrow p | a or p | b, more generally, p is a prime number and $p \mid a \cdot b \cdot ... \cdot z$ \Rightarrow p must divide one of a, b, ..., z

proof:

 \triangle case 1: p | a

 \triangle case 2: p $/a$.

 \triangleright p/ a and p is a prime number \Rightarrow gcd(p, a) = 1 \Rightarrow 1 = a x + p y

$$
\triangleright \text{ multiply both side by b, } b = \underline{b} \cdot \underline{a} \cdot x + b \cdot \underline{p} \cdot y
$$

- \triangleright p | a b \Rightarrow p | b
- $\hat{\phi}$ In general: if p | a then we are done, if p | a then p | bc...z, continuing this way, we eventually find that p divides one of the factors of the product

("Fair-MAH")

5

Fermat's Little Theorem

 \lor If p is a prime, $p \nmid a$ then $a^{p-1} \equiv 1 \pmod{p}$ Proof: ϕ let S = {1, 2, 3, ..., p-1} (Z_p^*), define $\psi(x) \equiv a \cdot x \pmod{p}$ be a mapping $\psi: S \rightarrow Z$ $\forall x \in S, \psi(x) \neq 0 \pmod{p} \Rightarrow \forall x \in S, \psi(x) \in S$, i.e. $\psi: S \rightarrow S$ if $\psi(x) \equiv a \cdot x \equiv 0 \pmod{p} \implies x \equiv 0 \pmod{p}$ since $gcd(a, p) = 1$ $\& \forall x, y \in S$, if $x \neq y$ then $\psi(x) \neq \psi(y)$ since if $\psi(x) \equiv \psi(y) \Rightarrow a \cdot x \equiv a \cdot y \Rightarrow x \equiv y$ since $gcd(a, p) = 1$ \ast from the above two observations, $\psi(1)$, $\psi(2)$,... $\psi(p-1)$ are distinct elements of S $\hat{\varphi}$ 1.2 $\cdot ... \cdot (p-1) \equiv \psi(1) \cdot \psi(2) \cdot ... \cdot \psi(p-1) \equiv (a \cdot 1) \cdot (a \cdot 2) \cdot ... \cdot (a \cdot (p-1))$ \equiv a^{p-1} (1·2 ·... ·(p-1)) (mod p) \approx since gcd(j, p) = 1 for j \in S, we can divide both side by 1, 2, 3, ... p-1, and obtain $a^{p-1} \equiv 1 \pmod{p}$

Factorization into primes \Diamond Theorem: Every positive integer is a product of primes. This factorization into primes is unique, up to reordering of the factors. $|\cdot|$ Empty product equals 1. * Proof: product of primes

Prime is a one factor product $\hat{\phi}$ assume there exist positive integers that are not product of primes \Leftrightarrow let n be the smallest such/integer • Prime is a one factor product. ϕ since n can not be 1 or a prime, n must be composite, i.e. n = a b ϕ since n is the smallest, both a and b must be products of primes. $\hat{\phi}$ n = a b must also be a product of primes, contradiction

Proof: uniqueness of factorization $\hat{\phi}$ assume $n = r_1^{c_1}r_2^{c_2}\cdots r_k^{c_k}p_1^{a_1}p_2^{a_2}\cdots p_s^{a_s} = r_1^{c_1}r_2^{c_2}\cdots r_k^{c_k}q_1^{b_1}q_2^{b_2}\cdots q_t^{b_t}$

- where p_i , q_i are all distinct primes.
- $\hat{\phi}$ let m = n / $(r_1^c r_2^c \cdots r_k^c k)$
- \approx consider p_1 for example, since p_1 divide m = $q_1q_1...q_1q_2...q_t$, p_1 must divide one of the factors q_i , contradict the fact that " p_i , q_i are distinct primes"

Fermat's Little Theorem

\n
$$
\angle
$$
 Ex: 2¹⁰ = 1024 ≡ 1 (mod 11)\n

\n\n $2^{53} = (2^{10})^5 2^3 \equiv 1^5 2^3 \equiv 8 \pmod{11}$ \n

\n\n i.e. 2⁵³ ≡ 2⁵³ mod 10 ≡ 2³ ≡ 8 (mod 11)\n

 \div if n is prime, then $2^{n-1} \equiv 1 \pmod{n}$ i.e. if $2^{n-1} \neq 1 \pmod{n}$ then n is not prime $\leftarrow (*)$ usually, if $2^{n-1} \equiv 1 \pmod{n}$, then n is prime * exceptions: $2^{561-1} \equiv 1 \pmod{561}$ although $561 = 3.11 \cdot 17$ 2^{1729-1} = 1 (mod 1729) although 1729 = 7 \cdot 13 \cdot 19

 \star (\ast) is a quick test for eliminating composite number

7

A second proof of Euler's Theorem

Euler's Theorem: $\forall a \in Z_n^*$, $a^{\phi(n)} \equiv 1 \pmod{n}$

- \Diamond We have proved the above theorem by showing that the function $\psi(x) = a \cdot x \pmod{n}$ is a permutation.
- \diamond We can also prove it through Fermat's Little Theorem consider $n = p \cdot q$, $\forall a \in Z_p^*$, $a^{p-1} \equiv 1 \pmod{p} \Rightarrow (a^{p-1})^{q-1} \equiv a^{\phi(n)} \equiv 1 \pmod{p}$ $\forall a \in Z_{\alpha}^{\{r\}}, a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{p-1} \equiv a^{\phi(n)} \equiv 1 \pmod{q}$ from CRT, $\forall a \in Z_n^*$ (i.e. $p \nmid a$ and $q \nmid a$), $a^{\phi(n)} \equiv 1 \pmod{n}$

note: the above proof is not valid when $p=q$

Euler's Theorem

 \div Example: What are the last three digits of 7^{803} ? i.e. we want to find 7^{803} (mod 1000) $1000 = 2^3 \cdot 5^3$, $\phi(1000) = 1000(1-1/2)(1-1/5) = 400$ $7^{803} \equiv 7^{803 \pmod{400}} \equiv 7^3 \equiv 343 \pmod{1000}$ \div Example: Compute 2^{43210} (mod 101)? $101 = 1 \cdot 101,$ $\qquad \phi(101) = 100$ $2^{43210} \equiv 2^{43210 \pmod{100}} \equiv 2^{10} \equiv 1024 \equiv 14 \pmod{101}$

Carmichael's Theorem:

 $\forall a \in \mathbb{Z}_n^*$, $a^{\lambda(n)} \equiv 1 \pmod{n}$ and $a^{n \cdot \lambda(n)} \equiv 1 \pmod{n^2}$ where n=p \cdot q, p \neq q, λ (n) = lcm(p-1, q-1), λ (n) | ϕ (n)

cond proof of Euler's Theorem

s Theorem: $\forall a \in Z_n^*, a^{\phi(n)} \equiv 1 \pmod{n}$

proved the above theorem by showing that the
 $\psi(x) \equiv a \cdot x \pmod{n}$ is a permutation.

daso prove it through Fermat's Little Theorem

daso prove it through \Diamond like Euler's Theorem, we can prove it through Fermat's Little Theorem, consider $n = p \cdot q$, where $p \neq q$, $\forall a \in Z_p^*$, $a^{p-1} \equiv 1 \pmod{p} \Rightarrow (a^{p-1})^{(q-1)/\gcd(p-1,q-1)} \equiv a^{\lambda(n)} \equiv 1 \pmod{p}$ $\forall a \in Z_a^*$, $a^{q-1} \equiv 1 \pmod{q} \Rightarrow (a^{q-1})^{(p-1)/\text{gcd}(p-1,q-1)} \equiv a^{\lambda(n)} \equiv 1 \pmod{q}$ from CRT, $\forall a \in Z_n^*$ (i.e. p $\nmid a$ and q $\nmid a$), $a^{\lambda(n)} \equiv 1 \pmod{n}$ therefore, $\forall a \in Z_n^*$, $a^{\lambda(n)} = 1 + k \cdot n$ raise both side to the n-th power, we get $a^{n \cdot \lambda(n)} = (1 + k \cdot n)^n$, \Rightarrow aⁿ· $\lambda^{(n)} = 1 + n \cdot k \cdot n + ... \Rightarrow \forall a \in Z_n^*$ (or $Z_{n^2}^*$), $a^{n \cdot \lambda^{(n)}} \equiv 1 \pmod{n^2}$

Basic Principle to do Exponentiation

- \Diamond Let a, n, x, y be integers with n ≥ 1 , and gcd(a,n)=1 if $x \equiv y \pmod{\phi(n)}$, then $a^x \equiv a^y \pmod{n}$.
- \Diamond If you want to work mod n, you should work mod $\phi(n)$ or $\lambda(n)$ in the exponent.

Primitive Roots modulo p

 \diamond When p is a prime number, a primitive root modulo p is a number whose powers yield every nonzero element mod p. (equivalently, the order of a primitive root is p-1) \div ex: $3^1 \equiv 3$, $3^2 \equiv 2$, $3^3 \equiv 6$, $3^4 \equiv 4$, $3^5 \equiv 5$, $3^6 \equiv 1 \pmod{7}$ 3 is ^a primitive root mod 7 \diamond sometimes called a multiplicative generator \Diamond there are plenty of primitive roots, actually $\phi(p-1)$ $*$ ex. p=101, $\phi(p-1)=100 \cdot (1-1/2) \cdot (1-1/5)=40$ p=143537, (p-1)=143536ꞏ(1-1/2)ꞏ(1-1/8971)=71760

17

Primitive Testing Procedure

- \Diamond How do we test whether h is a primitive root modulo p? naïve method:
	- go through all powers h^2 , h^3 , ..., h^{p-2} , and make sure $\neq 1$ modulo p
	- * faster method:

assume p-1 has prime factors $q_1, q_2, ..., q_n$ for all q_i, make sure $h^{(p-1)/q_i}$ modulo p is not 1, then h is a primitive root

```
Intuition: let h 

                    let h = g^a(mod p), if gcd(a, p-1)=d (i.e. g^a is not a<br>primitive root), (g^a)^{(p-1)/q_i} \equiv (g^{a/q_i})(^{p-1)} \equiv 1 \pmod{p} for
                  some q_i | d
```
Primitive Testing Procedure (cont'd)

 \Diamond Procedure to test a primitive g:

assuming p-1 has prime factors $q_1, q_2, ..., q_n$, (i.e. p-1 = $q_1^{r_1}...q_n^{r_n}$) for all q_i , make sure $g^{(p-1)/q_i}$ (mod p) is not 1

Proof:

(a) by definition, $g^{\text{ord}_p(g)} \equiv 1 \pmod{p}$, $g^{\phi(p)} \equiv 1 \pmod{p}$ therefore $\text{ord}_p(g) \leq \phi(p)$ if $\phi(p) = \text{ord}_n(g) * k + s$ with $s < \text{ord}_n(g)$ $g^{\phi(p)} \equiv g^{\text{ord}_p(g) * k} g^s \equiv g^s \equiv 1 \pmod{p}$, but $s < \text{ord}_p(g) \Longrightarrow s = 0$ \Rightarrow ord_p(g) | $\phi(p)$ and ord_p(g) $\leq \phi(p)$ (b) assume g is not a primitive root i.e ord_n(g) $\leq \phi(p)=p-1$ then \exists i, such that $\text{ord}_p(g) | (p-1)/q_i$ i.e. $g^{(p-1)/q_i} \equiv 1 \pmod{p}$ for some q_i (c) if for all q_i, g $(p-1)/q_i \neq 1 \pmod{p}$ then $\text{ord}_{p}(g) = \phi(p)$ and g is a primitive root modulo p

Multiplicative Generators in Z_n^*

- \Diamond How do we define a multiplicative generator in Z_n^* if n is a composite number?
	- $*$ Is there an element in Z_n^* that can generate all elements
	- \star If n = p \cdot q, the answer is negative. From Carmichael theorem, $\forall a \in Z_n^*$, $a^{\lambda(n)} \equiv 1 \pmod{n}$, gcd(p-1, q-1) is at least 2, $\lambda(n) =$ lcm(p-1, q-1) is at most $\phi(n)$ / 2. The size of a maximal possible multiplicative subgroup in Z_n^* is therefore less than $\lambda(n)$.
	- $*$ How many elements in Z_n^* can generate the maximal possible subgroup of Z_n^* ?

22

 \Diamond For example: find *x* such that $x^2 \equiv 71 \pmod{77}$

 \star Is there any solution?

 $*$ How many solutions are there?

* How do we solve the above equation systematically?

 \Diamond In general: find *x* s.t. $x^2 \equiv b \pmod{n}$,

where $b \in QR_n$, $n = p \cdot q$, and p, q are prime numbers

 \triangle Easier case: find *x* s.t. $x^2 \equiv b \pmod{p}$, where *p* is a prime number, $b \in QR_p$

Note: QR_n is "Quadratic Residue in Z_n^* " to be defined later

Finding Square Root mod *p*

 \Diamond Given $y \in Z_p^*$, find *x*, s.t. $x^2 \equiv y \pmod{p}$, *p* is prime $p \equiv 1 \pmod{4}$ (i.e. $p = 4k + 1$) : probabilistic algorithm $p \equiv 3 \pmod{4}$ (i.e. $p = 4k + 3$) : deterministic algorithm \Diamond Is there any solution? check $y^2 \neq 1 \pmod{p}$ Is y a QR_p ? p-1 2 $\Diamond p \equiv 3 \pmod{4}$ $x \equiv \pm y^4 \pmod{p}$ $p+1$ $\phi(p+1)/4 = (4k+3+1)/4 = k+1$ is an integer $x^2 = y^{(p+1)/2} = y^{(p-1)/2} \cdot y \equiv y \pmod{p}$

Finding Square Root mod *p*

 $\Diamond p \equiv 1 \pmod{4}$

 \star Peralta, Eurocrypt'86, $p = 2^{s} q + 1$ \ast 3-step probabilistic procedure τ 1. Choose a random number *r*, if $r^2 \equiv v \pmod{p}$, output $x = r^2$ 2. Calculate $(r + z)^{(p-1)/2} \equiv u + v z \pmod{f(z)}$, $f(z) = z^2 - v$ 3. If $u = 0$ then output $x \equiv v^{-1} \pmod{p}$, else goto step 1

note: $(b + cz)(d + ez) \equiv (bd + cez^2) + (be + cd)z$ \equiv $(bd+ce$ $y)$ + $(be+cd)$ *z* (mod *z*²-*y*) use *square-multiply* algorithm to calculate $(r+z)^{(p-1)/2}$

 \star the probability to successfully find *x* for each $r \geq 1/2$

Finding Square Roots mod ⁿ

 \diamond Now we return to the question of solving square roots in Z_n^* , i.e.

for an integer $y \in QR_n$,

find $x \in Z_n^*$ such that $x^2 \equiv y \pmod{n}$

- \Diamond We would like to transform the problem into solving square roots mod p.
- \Diamond Question: for n=p q Is solving " $x^2 \equiv y \pmod{n}$ " equivalent to solving " $x^2 \equiv y \pmod{p}$ and $x^2 \equiv y \pmod{q}$ "???"

Finding Square Root mod p

 ex: finding *x* such that $x^2 \equiv 12 \pmod{13}$ solution: $\text{\textsterling} 13 \equiv 1 \pmod{4}$ \triangle choose $r = 3$, $3^2 = 9 \neq 12$ \approx $(3 + z)^{(13-1)/2} = (3 + z)^6 \equiv 12 + 0 z \pmod{z^2-12}$ \triangle choose $r = 7, 7^2 \equiv 10 \neq 12$ $\approx (7 + z)^{(13-1)/2} = (7 + z)^6 \equiv 0 + 8 z \pmod{z^2-12}$ \Rightarrow *x* = 8⁻¹ = 5 (mod 13)

> Why does it work??? Why is the success probability $> \frac{1}{2}$???

Finding Square Roots mod $p \cdot q$

 \Diamond find x such that $x^2 \equiv 71 \pmod{77}$

- $* 77 = 7 \cdot 11$
- \star "x* satisfies f(x*) = 71 (mod 77)" \Leftrightarrow "x* satisfies both $f(x^*) \equiv 1 \pmod{7}$ and $f(x^*) \equiv 5 \pmod{11}$ "
- * since 7 and 11 are prime numbers, we can solve $x^2 \equiv 1 \pmod{7}$ and $x^2 \equiv 5 \pmod{11}$ far more easily than $x^2 \equiv 71 \pmod{77}$
	- $x^2 \equiv 1 \pmod{7}$ has two solutions: $x \equiv \pm 1 \pmod{7}$
	- $x^2 \equiv 5 \pmod{11}$ has two solutions: $x \equiv \pm 4 \pmod{11}$
- * put them together and use CRT to calculate the four solutions

 $x \equiv 1 \pmod{7} \equiv 4 \pmod{11} \Rightarrow x \equiv 15 \pmod{77}$

- $x \equiv 1 \pmod{7} \equiv 7 \pmod{11} \Rightarrow x \equiv 29 \pmod{77}$ $x \equiv 6 \pmod{7} \equiv 4 \pmod{11} \Rightarrow x \equiv 48 \pmod{77}$
- $x \equiv 6 \pmod{7} \equiv 7 \pmod{11} \Rightarrow x \equiv 62 \pmod{77}$

25

Computational Equivalence to Factoring

- \Diamond Previous slides show that once you know the factoring of *n* to be *p* and *q*, you can easily solve the square roots of *n*
- \Diamond Indeed, if you can solve the square roots for one single quadratic residue mod n, you can factor n.
	- $*$ from the four solutions $\pm a$, $\pm b$ on the previous slide $x \equiv c \pmod{p} \equiv d \pmod{q} \Rightarrow x \equiv a \pmod{p \cdot q}$ $x \equiv c \pmod{p} \equiv -d \pmod{q} \Rightarrow x \equiv b \pmod{p \cdot q}$ $x \equiv -c \pmod{p} \equiv d \pmod{q} \Rightarrow x \equiv -b \pmod{p \cdot q}$ $x \equiv -c \pmod{p} \equiv -d \pmod{q} \Rightarrow x \equiv -a \pmod{p \cdot q}$ we can find out $a \equiv b \pmod{p}$ and $a \equiv -b \pmod{q}$ (or equivalently $a \equiv -b \pmod{p}$ and $a \equiv b \pmod{q}$) * therefore, p | (a-b) i.e. gcd(a-b, n) = p (ex. gcd(15-29, 77)=7) q $|(a+b)$ i.e. gcd $(a+b, n) = q$ (ex. gcd $(15+29, 77)=11$)

Quadratic Residues in Z_n^* \mathbf{u} $\mathbf{L}_{\mathbf{p}}$

1st proof:

- * For each $x \in Z_p^*$, p- $x \neq x \pmod{p}$ (since if x is odd, p-x is even), it's clear that x and p-x are both square roots of a certain $y \in Z_p^*$,
- \ast Because there are only p-1 elements in Z_p^* , we know that $|QR_n| \leq (p-1)/2$
- * Because $| \{g^2, g^4, \ldots, g^{p-1}\} | = (p-1)/2$, there can be no more quadratic residues outside this set. Therefore, the set $\{g, g^3,..., g^{p-2}\}\$ contains only quadratic nonresidues

Quadratic Residues

- \Diamond Consider $y \in Z_n^*$, if $\exists x \in Z_n^*$, such that $x^2 \equiv y \pmod{n}$, then *y* is called a quadratic residue mod *n*, i.e. $y \in QR$ _n
- \div If the modulus is a prime number p, there are $(p-1)/2$ quadratic residues in Z_p^*
	- * let *g* be a primitive root in Z_p^* , $\{g, g^2, g^3, ..., g^{p-1}\}\)$ is a permutation of {1,2,… *p*-1}
	- \star in the above set, $\{g^2, g^4, \ldots, g^{p-1}\}\$ are quadratic residues (QR_n)
	- $*(g, g^3,..., g^{p-2})$ are quadratic non-residues (QNR_p), out of which there are $\phi(p-1)$ primitive roots

Quadratic Residues in Z_p^*

2n^d proof:

- * Because the squares of x and p-x are the same, the number of quadratic residues must be less than p-1 (i.e. some element in Z_p^*) must be quadratic non-residue)
- * Consider this set $\{g, g^3, \ldots, g^{p-2}\}\$ directly
- $*$ If $g \in QR_p$, then g cannot be a primitive (because g^k must all be quadratic residues)
- \star If $g^{2k+1} \equiv g^{2k} \cdot g \in QR_p$, then there exists an $x \in Z_p^*$ such that $x^2 \equiv g^{2k} \cdot g$ g (mod p)
- * Because gcd(g^{2k}, p)=1, g= x² · (g^{2k})⁻¹ =(x·(g⁻¹)^k)² $\in QR_p$ contradiction
- * i.e. g^{2k+1}

29

Quadratic Residues in Z_p^* \div ex. *p*=143537, *p*-1=143536=2⁴ \cdot 8971, $\phi(p-1)=2^4.8971\cdot(1-1/2)\cdot(1-1/8971)=71760$ primitives, $(p-1)/2 = 71768 \text{ QR}_p$'s and 71768 QNR_p's * Note: if *g* is a primitive, then g^3 , g^5 ... are also primitives except the following 8 numbers $g^{8971}, g^{8971.3}, \dots g^{8971.15}$ Elements in Z_p^* can be classified further according to their order since xZp*, ordp(x) | p-1, we can list all possible orders ordp(x) p-¹ p-12 p-14 p-18 p-¹ ¹⁶ p-¹ ⁸⁹⁷¹ p-¹ 8971ꞏ2 p-¹ 8971ꞏ4 p-¹ 8971ꞏ8 p-¹ 8971ꞏ16 QNR_p QR_p QR_p QR_p QR_p QNR_p QR_p QR_p QR_p QR_p QR_p 33 $\#$ $\phi(p-1)$ | | | 8 $\begin{array}{|c|c|} \hline \text{a} & \text{a} & \text{a} & \text{a} \\ \hline \text{s} & & \text{s} & \text{b} \\ \hline \text{b} & & \text{s} & \text{s} \\ \hline \text{Eegendre } \text{Symbol} & & & \text{Legendre } \text{Sym} \end{array}$

Composite Quadratic Residues

- \Diamond If *y* is a quadratic residue modulo *n*, it must be a quadratic residue modulo all prime factors of *ⁿ*. $\exists x \in Z_n^*$ s.t. $x^2 \equiv y \pmod{n} \Leftrightarrow x^2 = k \cdot n + y = k \cdot p \cdot q + y$ \Rightarrow x² = y (mod p) and x² = y (mod q)
- \Diamond If *y* is a quadratic residue modulo *p* and also a quadratic residue modulo *q*, then *y* is a quadratic residue modulo *n.*

 \exists r₁ $\in Z_p^*$ and r₂ $\in Z_q^*$ such that $y \equiv r_1^2 \pmod{p} \equiv (r_1 \bmod p)^2 \pmod{p}$ \equiv r₂² (mod q) \equiv (r₂ mod q)² (mod q) from CRT, $\exists!$ r $\in Z_n^*$ such that $r \equiv r_1 \pmod{p} \equiv r_2 \pmod{q}$ therefore, $y \equiv r^2 \pmod{p} \equiv r^2 \pmod{q}$ again from CRT, $y \equiv r^2 \pmod{p \cdot q}$

- \Diamond Legendre symbol $L(a, p)$ is defined when *a* is any integer, *p* is a prime number greater than 2
	- $\star L(a, p) = 0$ if p | a
	- \star L(a, p) = 1 if a is a quadratic residue mod p
	- \star L(a, p) = -1 if a is a quadratic non-residue mod p
- \Diamond Two methods to compute (a/p)
	- $*(a/p) = a^{(p-1)/2} \pmod{p}$
- * recursively calculate by $L(a \cdot b, p) = L(a, p) \cdot L(b, p)$ 1. If $a = 1$, $L(a, p) = 1$ 2. If a is even, $L(a, p) = L(a/2, p) \cdot (-1)^{(p^2-1)/8}$ 3. If a is odd prime, $L(a, p) = L((p \mod a), a) \cdot (-1)^{(a-1)(p-1)/4}$ \Diamond Legendre symbol L(a, p) = -1 if a \in QNR_p $L(a, p) = 1$ if $a \in QR_p$

Legendre Symbol $y \in QR_n \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$ (\Rightarrow) $*$ If $y \in QR_p$ \star Then $\exists x \in Z_p^*$ such that y= $x^2 \pmod{p}$ * Therefore, $y^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{(p-1)} \equiv 1 \pmod{p}$ (\Leftarrow) $*$ If $y \notin QR_p$ i.e. $y \in QNR_p$ * Then $y \equiv g^{2k+1} \pmod{p}$ ***** Therefore, $y^{(p-1)/2} \equiv (g^{2k} \cdot g)^{(p-1)/2} \equiv g^{k(p-1)} g^{(p-1)/2} \equiv g^{(p-1)/2} \neq 1 \pmod{p}$ 36 $\text{ord}_{p}(g) = p-1$

Another Proof $y \in QR_p \Leftrightarrow y^{(p-1)/2} \equiv 1 \pmod{p}$

 (\Rightarrow)

 $*$ If $y \in QR_p$

- * Then $\exists x \in Z_p^*$ such that y= $x^2 \pmod{p}$
- * Therefore, $y^{(p-1)/2} \equiv (x^2)^{(p-1)/2} \equiv x^{(p-1)} \equiv 1 \pmod{p}$

 (\Leftarrow)

- * Since $\forall i \in Z_p^*$, gcd $(i, p)=1$, $\exists j$ such that $i \cdot j \equiv y \pmod{p}$
- \star If $y \notin QR_p$, the congruence $x^2 \equiv y \pmod{p}$ has no solution, therefore, $j \neq i \pmod{p}$
- $*$ We can group the integers 1, 2, …, p-1 into $(p-1)/2$ pairs (i, j) , each satisfying $i \cdot j \equiv y \pmod{p}$
- * Multiply them together, we have $(p-1)! \equiv y^{(p-1)/2} \pmod{p}$
- ***** From Wilson's theorem, $y^{(p-1)/2} \equiv -1 \pmod{p}$

Order q Subgroup G_q of Z_p^*

- \Diamond Let p be a prime number, g be a primitive in Z_p^* \Diamond Let p = k · q + 1 i.e. q | p-1 where q is also a prime number $\&$ Let G_q = {g^k, g^{2k}, ...,g^{q · k} = 1} \div Is G_q a subgroup in Z_p^* ? YES
	- $\forall x, y \in G_q$, it is clear that $z \equiv g^{i \cdot k} \equiv x \cdot y \equiv g^{(i_1 + i_2) \cdot k} \pmod{p}$ is also in G_q, where $i \equiv i_1 + i_2 \pmod{q}$
- \div Is the order of the subgroup G_q q? YES $\forall i_1, i_2 \in Z_q, i_1 \neq i_2, g^{i_1 \cdot k} \neq g^{i_2 \cdot k} \pmod{p}$ otherwise g is not a primitive in Z_p^* , also $g^{q+k} \equiv 1 \pmod{p}$
- \div How many generators are there in G_q? $\phi(q)$ =q-1 a. there are $\phi(p-1)$ generators in $Z_p^* = \{g^1, g^2, ..., g^x, ..., g^{p-1}\}$, since $gcd(p-1, x) = d > 1$ implies that $ord_p(g^x) = (p-1)/d$

Exactly Two Square Roots

Every y \in QR_p has exactly two square roots i.e. x and p-x such that $x^2 \equiv y \pmod{p}$

- pf: \star QR_p = { g^2 , g^4 ,..., g^{p-1} }, |Z_p^{*}| = p-1, and |QR_p| = (p-1)/2
	- * For each y=g^{2k} in QR_p, there are at least two distinct $x \in Z_p^*$ s.t. $x^2 \equiv y \pmod{p}$, i.e., g^k and $p-g^k$ (if one is even, the other is odd)
	- * Since $|QR_p| = (p-1)/2$, we can obtain a set of p-1 square roots $S = \{g, p-g, g^2, p-g^2, \ldots, g^{(p-1)/2}, p-g^{(p-1)/2}\}$
	- \star Claim: the elements of S are all distinct $(1, g^i \neq g^j \pmod{p}$ when i≠j since g is a primitive, 2. gⁱ *-g^j (mod p) when i≠j, otherwise $(g^{i}+g^{j})(g^{i}+g^{j})\equiv g^{2i}+g^{2j}\equiv 0 \pmod{p}$ implies $i\equiv j \pmod{(p-1)/2}$, 3. $g^{i} \neq -g^{i} \pmod{p}$ since if one is even, the other is odd)
	- $*$ If there is one more square root z of y=g^{2k} which is not g^k and $-g^k$, it must belong to S (which is Z_p^*), say g^j , j≠k, which would imply that $g^{2j} \equiv g^{2k} \pmod{p}$, and leads to contradiction

Order q Subgroup G_q (cont'd)
also (g^x)^y = 1 (mod p) and g^{p-1} = 1 (mod p) implies that eith

 $y^y \equiv 1 \pmod{p}$ and $g^{p-1} \equiv 1 \pmod{p}$ implies that either $x \cdot y \mid p-1$ or $p-1 \mid x \cdot y$, $gcd(x, p-1) = 1$ implies that $p-1 \mid y$ therefore, $ord_n(g^x) = p-1$ b. there are $\phi(q)$ primitives in $G_q = \{g^k, g^{2k}, ..., g^{q-k} \equiv 1\}$ since q is also a prime number \angle **Is** G_q **a unique order q subgroup in** \mathbf{Z}_p^* **? YES** Let S be an order-q cyclic subgroup, $S = \{g, g^2, ..., g^q = 1\}$. Since p is prime, \exists a unique k-th root $g_1 \in Z_p^*$, s.t. $g \equiv g_1^k \pmod{p}$ Let $g_1 \neq g$ be another primitive, clearly $g_1 \equiv g^s \pmod{p}$, Is the set S= $\{g_1$ s the set S={ g_1^k , g_1^{2k} , ..., g_1^{q+k} =1} different from G_q ? let $x \in S$, i.e. $x \equiv g_1^{i_1: k} \pmod{p}$, $i_1 \in Z_q$ $x \equiv g_1^{i_1 \cdot k} \equiv g^{s \cdot i_1 \cdot k} \equiv g^{i \cdot k} \pmod{p}$ where $i \equiv s \cdot i_1 \pmod{q}$, i.e. $S \subseteq G_q$ The proof is similar for $G_q \subseteq S$. Therefore, $S = G_q$

43

41

Gauss' Lemma

Theorem: $J(2, p) = (-1)^{(p^2-1)/8}$ **Theorem**: let p be a prime, $gcd(a, p) = 1$ then $L(a, p) = (-1)^t$ (p-1)/2 where $t = \sum_{j=1}^{\infty} \lfloor j \cdot a/p \rfloor$. Also $L(2, p) = (-1)^{(p^2-1)/8}$ pf. $* \alpha_j \in \{r_1, ..., r_n\}$ if $\alpha_j > p/2$ and $\alpha_j \in \{s_1, ..., s_{(p-1)/2-n}\}$ if $\alpha_j < p/2$ \star j a = p $\lfloor j \cdot a/p \rfloor + \alpha_j$ for j=1, ..., (p-1)/2 $\Rightarrow \sum_{i=1}^{(p-1)/2} j a = \sum_{i=1}^{(p-1)/2} p \lfloor j \cdot a/p \rfloor + \sum_{i=1}^{n} r_j + \sum_{i=1}^{(p-1)/2-n} s_j$ $* \{s_1, ..., s_{(p-1)/2-n}, p-r_1, ..., p-r_n\}$ is a reordering of $\{1, 2, ..., (p-1)/2\}$ $\Rightarrow \sum_{j=1}^{(p-1)/2} j = \sum_{j=1}^{n} (p-r_j) + \sum_{j=1}^{(p-1)/2-n} s_j = np - \sum_{j=1}^{n} r_j + \sum_{j=1}^{(p-1)/2-n} s_j$ * Subtracting the above two equations, we have 46 $(a - 1)\sum_{i=1}^{(p-1)/2} j = p \left(\sum_{i=1}^{(p-1)/2} \lfloor j \cdot a/p \rfloor - n \right) + 2 \sum_{i=1}^{n} r_i$

 $J(2, p) = (-1)^{(p^2-1)/8}$ (cont'd) * $\sum_{j=1}^{(p-1)/2} j = 1 + ... + (p-1)/2 = (p-1)/2 (1 + (p-1)/2) / 2 = (p^2-1)/8$ * Thus, we have $(a-1) (p^2-1)/8 \equiv \sum_{j=1}^{(p-1)/2} \lfloor j \cdot a/p \rfloor - n \pmod{2}$

***** If a is odd, $n = \sum_{j=1}^{(p-1)/2} \lfloor j \cdot a/p \rfloor$ \star If a = 2, $\lfloor j \cdot 2/p \rfloor = 0$ for j=1, ..., (p-1)/2, n = (p²-1)/8 (mod 2) therefore, $J(2, p) = (-1)^{(p^2-1)/8}$

Lemma. ord-k elements in $Z_p^* \leq \phi(k)$

Lemma. There are at most $\phi(k)$ ord-k elements in Z_p^* , $k \mid p-1$ pf.

- $\Diamond Z_p^*$ is a field \Rightarrow x^k-1=0 (mod p) has at most k roots
- \diamond if *a* is a nontrivial root ($a\neq 1$), then $\{a^0, a^1, a^2, ..., a^{k-1}\}\$ is the set of the k distinct roots.
- \Diamond In this set, those a' with gcd(ℓ , k) = d > 1 have order at most k/d.
- \Diamond Only those a^{ℓ} with gcd(ℓ , k) = 1 might have order k.
- \Diamond Hence, there are at most $\phi(k)$ elements (out of k elements) that have order equal to k.

Lemma. Σ_{k|p-1} φ(k) = p-1
\n**Lemma.** Σ_{k|p-1} φ(k) = p-1
\n**if.**
\n
$$
p-1 = Σk|p-1 (# a in Zp* s.t. gcd(a, p-1) = k)
$$
\n
$$
= Σk|p-1 (# b in {1,...,(p-1)/k} s.t. gcd(b, (p-1)/k) = 1)
$$
\n
$$
= Σk|p-1 φ((p-1)/k)
$$
\n
$$
= Σk|p-1 φ(k)
$$
\n
$$
ex. {φ(1}, φ(2), φ(3), φ(4), φ(6), φ(12)), p=13
$$

Generators in QR_n

 \Diamond Number of generators in Z_p^* : $\phi(p-1)$ Let g be a primitive, $Z_n^* = \langle g \rangle = \{g, g^2, g^3, ..., g^k, ..., g^{p-1}\}\$ if gcd(k, p-1) = $d \neq 1$ then g^k is not a primitive since $(g^k)^{(p-1)/d} = (g^{k/d})^{p-1} = 1$, i.e. ord_p $(g^k) \leq (p-1)/d$ if gcd(k, p-1) = 1 and g^k is not a primitive, then d=ord_n(g^k) < p-1, i.e. $(g^k)^d = 1$; g is a primitive \Rightarrow p-1 | k d \Rightarrow p-1 | d contradiction. $\leq Z_n^*$ is not a cyclic group (n = p q, p=2p'+1, q=2q'+1, $\lambda(n)=2p'q'$) Since $x^{\lambda(n)} \equiv 1 \pmod{n}$, there is no generator that can generate all members in Z_n^* \Diamond QR_n is a cyclic group of order $\lambda(n)/2 =$ lcm(p-1, q-1)/2 = p' q' $\forall x \in Z_n^*$, $x^{\lambda(n)} \equiv 1 \pmod{n}$ Carmichael's Theorem clearly, $(x^2)^{\lambda(n)/2} \equiv 1 \pmod{n}$, $QR_n = \{x^2 \mid \forall x \in Z_n^*\}$ 51 i.e. $\forall y \in QR_n$, $\text{ord}_n(y) | p' q'$ ($\text{ord}_n(y) \in \{1, p', q', p'q'\}$)

 Z_p^* is a cyclic group **Theorem**: Z_p^* is a *cyclic* group for a prime number p pf. Lemma 1: # of ord-k elements in $Z_n^* \leq \phi(k)$, where k | p-1 Lemma 2: $\Sigma_{k|p-1}$ $\phi(k) = p-1$ The order k of every element in Z_n^* divides p-1 \Rightarrow Σ _{k|p-1} (# of elements with order k) = p-1 $\Rightarrow \sum_{k|p-1} \phi(k) \ge p-1$, combined with lemma 2, we know that # of ord-k elements in $Z_p^* = \phi(k)$ \Rightarrow # of ord-(p-1) elements in $Z_p^* = \phi(p-1) > 1$ \Rightarrow There is at least one generator in Z_p^* , i.e. Z_p^* is cyclic 50 Ex. p=13, p-1 = $|\{1,5,7,11\}|$ + $|\{2,10\}|$ + $|\{3,9\}|$ + $|\{4,8\}|$ + $|\{6\}|$ $k=1$ $k=2$ $k=3$ $k=4$ $k=6$

Generators in QR_n (cont'd) cyclic? $\exists x^* \in Z_n^*$ ord_n $(x^*) = \lambda(n) = 2$ p' q' \Rightarrow $\exists y^* (= (x^*)^2) \in QR_n \text{ s.t. } ord_n(y^*) = \lambda(n)/2 = p' q'$ \Diamond Let y be a random element in QR_n, the probability that y is a generator is close to 1 Let v^* be a generator of OR_n, $QR_n = \langle y^* \rangle = \{y^*, (y^*)^2, (y^*)^3, ..., (y^*)^k, ..., (y^*)^{p'q'}\}\$ if gcd(k, p'q') = $d \ne 1$ then $(y^*)^k$ is not a generator since $((y^*)^k)^{p'q'd} = ((y^*)^{k/d})^{p'q'} = 1$, i.e. ord_p $((y^*)^k) \leq (p'q')/d$ $\phi(p'q') = \phi(p') \phi(q') = (p'-1)(q'-1) = p'q' - p' - q' + 1$ $=$ $p'q' - (p'-1) - (q'-1) - 1$ $\forall x \in \{ (y^*)^{q'}, (y^*)^{2q'}, \dots, (y^*)^{(p-1)q'} \} \text{ ord}_n(x) = p'$ $\forall x \in \{ (y^*)^{p'}, (y^*)^{2p'}, \dots, (y^*)^{(q-1)p'} \} \text{ ord}_n(x) = q'$ 52 $ord_n(1) = 1$ $Pr\{x \text{ is a generator } | x \in _pQR_n\} = \phi(p'q') / (p'q')$ is close to 1

Subgroups in Z_n^*

Consider n = p q, p=2p'+1, q=2q'+1, m=p'q', λ (n) = lcm(p-1, q-1)=2m, $\phi(n) = (p-1)(q-1) = 4m$

 \triangle **Z**_n^{*} is not a cyclic group

 \star Carmichael's theorem asserts that no element in Z_n^* can generate all elements in Z_n^* . (maximum order is 2m instead of 4m)

 $*$ However, Z_n^* is still a group over modulo n multiplication.

- \Diamond **QR**_n is a cyclic subgroup of order m = λ (n)/2, QR_n = {x² | \forall x $\in Z_n^*$ }
	- \star J₀₀ = {x $\in Z_n^*$ | J(x,p)=1 and J(x,q)=1}
	- $*$ If there exists an element in Z_n^* whose order is 2m, then QR_n is clearly a cyclic group. (Will the precondition be true?)
	- $\star \forall x \in Z_n^*$ $x^{2m} \equiv 1 \pmod{n}$ implies that $\forall y \in QR_n$ ord_n(y) | p'q' i.e. ord_n(y) is either 1, p', q', or p'q' (if there is one y s.t. ord_n(y)=m 53then y is a generator and QR_n is cyclic). Let's construct one.

Subgroups in Z_n^* (cont'd)

Let g_1 be a generator in Z_p^* , and g_2 be a generator in Z_q^* Let $g \equiv g_1 \pmod{p} \equiv g_2 \pmod{q}$, (note that $J(g, n) = 1, g \in J_{11}$) $g^{p-1} \equiv g^{2p'} \equiv g_1^{2p'} \equiv 1 \pmod{p}$, $g^{q-1} \equiv g^{2q'} \equiv g_2^{2q'} \equiv 1 \pmod{q}$ \Rightarrow $g^{2p'q'} \equiv 1 \pmod{p}$ and $g^{2q'p'} \equiv 1 \pmod{q}$ i.e. $g^{2p'q'} \equiv 1 \pmod{n}$ if there exists a $k \in \{1, 2, p', q', 2p', 2q', p'q'\}$ s.t. $g^k \equiv 1 \pmod{n}$ then $ord_n(g)$ is not $2p'q'$ 1. k=1: \Rightarrow $g_1 \equiv 1 \pmod{p}$ contradict with ord_p $(g_1) = p-1$ 2. k=p': \Rightarrow g^{p'} \equiv g₁^{p'} \equiv 1 (mod p) contradict with ord_n(g₁) = 2p' 3. k=q': \Rightarrow g^{q'} \equiv g₂^{q'} \equiv 1 (mod q) contradict with ord_a(g₂) = 2q' 4. k=2: \Rightarrow $g_1^2 \equiv 1 \pmod{p}$ contradict with ord_p $(g_1) = p-1$ 5. k=2p': \Rightarrow g^{2p'} = g₂^{2p'} = 1 (mod q) contradict with ord_a(g₂) = 2q' 6. k=2q': \Rightarrow g^{2q'} = g₁^{2q'} = 1 (mod p) contradict with ord_n(g₁) = 2p'

Subgroups in Z_n^* (cont'd) 7. k=p'q': \Rightarrow g^{p'q'} \equiv g₁^{p'q'} \equiv 1 (mod p) since $g_1^{2p'} \equiv 1 \pmod{p}$ and $gcd(q', 2) = 1 \implies \exists a, b \text{ s.t. } a q' + b 2 = 1$ \Rightarrow $g_1^p = g_1^{p'(a q' + b 2)} \equiv (g_1^{p'q'})^a (g_1^{2p'})^b \equiv 1 \pmod{p}$ contradict with $\text{ord}_{p}(g_1) = 2p'$ $1~\sim$ 7 implies that ord_n(g) = 2p'q', i.e. QR_o = {g², g⁴, ..., g^{p'q'}} and QR_n is a cyclic group. Fr{Elements in QR_n being a generator} = $\phi(p'q') / (p'q')$ \Diamond **J**_n is a cyclic subgroup of order $2m = \lambda(n)$, $J_n = \{x \in Z_n^* | J(x,n)=1\}$ \star J₁₁ = {x \in Z_n^{*} | J(x,p) = -1 and J(x,q) = -1} \star The above proof also shows that $J_n = \{g, g^2, ..., g^{2p'q'}\}\$ is cyclic * Pr{Elements in J_n being a generator} = $\phi(p'q') / (2p'q')$ $\leq \mathbf{J}_{01} \cup \mathbf{J}_{10} = \mathbf{Z}_{n}^{*} \setminus \{ \mathbf{J}_{00} \cup \mathbf{J}_{11} \}$ is not a subgroup in \mathbf{Z}_{n}^{*} \ast if $x \in J_{01}$ then $x \ast x \in J_{00}$

Generator in QR_n

 \div n = p q, p=2p'+1, q=2q'+1

 \div Find a generator in QR_n

1. Find a generator g_1 of Z_p^* (i.e. $Z_p^* = \langle g_1 \rangle$) and g_2 of Z_q^* (i.e. $Z_q^* = \langle g_2 \rangle$)

2. Calculate the generator $h_1 = g_1^2 \pmod{p}$ of QR_p and $h_2 = g_2^2 \pmod{1}$ of QR_q

3. Let $h \equiv h_1 \pmod{p} \equiv h_2 \pmod{q}$.

It is clear that $h \equiv g^2 \pmod{n}$, i.e. $h \in QR_n$, where $g \equiv g_1 \pmod{p} \equiv g_2 \pmod{q}$. **Claim**: h is a generator of QR_n

pf.

$$
y \in QR_n \Rightarrow y \in QR_p \text{ and } y \in QR_q
$$

i.e. $\exists x_1 \in Z_{p'}$ and $x_2 \in Z_{q'}$, $y \equiv h_1^{x_1} \pmod{p} \equiv h_2^{x_2} \pmod{q}$
 $\Rightarrow y \equiv g_1^{2x_1} \pmod{p} \equiv g_2^{2x_2} \pmod{q}$
 $\Rightarrow y \equiv g^{2x} \pmod{n}$ if $2x \equiv 2x_1 \pmod{p-1} \equiv 2x_2 \pmod{q-1}$
a unique $x \in Z_{p'q'}$ exists by CRT since $gcd(p-1, q-1) = gcd(2p', 2q') = 2$
 $\Rightarrow y \equiv h^x \pmod{n}$

55

