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Prime NumbersPrime Numbers
 Prime number: an integer p>1 that is divisible only by 1 

and itself, ex. 2, 3,5, 7, 11, 13, 17…
 Composite number: an integer n>1 that is not primep g p
 Fact: there are infinitely many prime numbers.  (by Euclid)

on the contrary assume a is the largest prime numberpf: on the contrary, assume an is the largest prime number
 let the finite set of prime numbers be {a0, a1, a2, …. an}
 the n mber b a *a *a * *a + 1 is not di isible b an a

pf:

 the number b = a0*a1*a2*…*an + 1 is not divisible by any ai
i.e. b does not have prime factors  an
 if b h i f t d b>d> th “d i i2  if b has a prime factor d,  b>d> an, then “d is a prime 

number that is larger than an” … contradiction
 if b does not have any prime factor less than b then “b is a

2 cases:
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 if b does not have any prime factor less than b, then b is a 
prime number that is larger than an” … contradiction

Prime Number TheoremPrime Number Theorem
 Prime Number Theorem:e Nu be eo e :

 Let (x) be the number of primes less than x
 Then x Then

in the sense that the ratio (x) / (x/ln x)  1 as x 

(x)   x
ln x

in the sense that the ratio (x) / (x/ln x)  1 as x 

 Also and for x17(x)  x (x)  1 10555 x
 Also,                          and for x17,

 Ex: number of 100 digit primes

(x)   ln x (x)   1.10555 ln x

 Ex: number of 100-digit primes

(10100) (1099)  10100 1099
 3 9  1097
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(10100) - (1099) 
ln 10100 ln 1099-  3.9  10

FactorsFactors

Every composite number can be expressible as a 
product aꞏb of integers with 1 < a, b< n

Every positive integer has a unique representation 
as a product of prime numbers raised to different 
powers.p

Ex. 504 = 23 ꞏ 32 ꞏ 7,  1125 = 32 ꞏ 53
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FactorsFactors
Lemma: p is a prime number and p | aꞏb p | a or p | bLemma: p is a prime number and p | a b       p | a or p | b, 

more generally, p is a prime number and p | aꞏbꞏ...ꞏz 
p must divide one of a b zp must divide one of a, b, …, z

 proof:
case 1: p | acase 1:  p | a
case 2:  p | a,

 p | a and p is a prime number  gcd(p a) = 1  1 = a x + p y p | a and p is a prime number  gcd(p, a) = 1  1 = a x + p y
 multiply both side by b,  b = b a x + b p y
 p | a b  p | b

 In general: if p | a then we are done, if p | a then p | bc…z, continuing 
this way, we eventually find that p divides one of the factors of the 
product
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product

Factorization into primesFactorization into primes
 Theorem: Every positive integer is a product of primes.  

This factorization into primes is unique, up to 
reordering of the factors. • Empty product equals 1.

P i i f t d t Proof: product of primes
 assume there exist positive integers that are not product of primes
 let n be the smallest such integer

• Prime is a one factor product.

 let n be the smallest such integer
 since n can not be 1 or a prime, n must be composite, i.e. n = aꞏb
 since n is the smallest, both a and b must be products of primes.
 n = aꞏb must also be a product of primes contradiction n = a b must also be a product of primes, contradiction

 Proof: uniqueness of factorization
 assume n = r1

c1r2
c2ꞏꞏꞏrk

ck p1
a1p2

a2ꞏꞏꞏps
as = r1

c1r2
c2ꞏꞏꞏrk

ck q1
b1q2

b2ꞏꞏꞏqt
bt

where pi, qj are all distinct primes. 
 let m = n / (r1

c1r2
c2ꞏꞏꞏrk

ck)
 consider p1 for example, since p1 divide m = q1q1..q1q2…qt, p1 must 
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1 1 1 1 1 2 t 1
divide one of the factors qj, contradict the fact that “pi, qj are distinct 
primes”

Fermat’s Little Theorem
(“Fair-MAH”)

Fermat s Little Theorem
 If p is a prime p | a then ap-11 (mod p) If p is a prime, p | a  then  a 1 (mod p)

 let S = {1, 2, 3, …, p-1} (Zp
*), define (x)  a ꞏ x (mod p) be 

a mapping : SZ
Proof:

a mapping : SZ
x  S, (x)  0 (mod p) x  S, (x)  S, i.e. : SS 

if (x)  a ꞏ x  0 (mod p)   x  0 (mod p) since gcd(a, p) = 1

 x, y  S, if x  y then (x)  (y) since
( ) ( p) ( p) g ( , p)

if (x)  (y)  a ꞏ x  a ꞏ y  x  y since gcd(a, p) = 1
 from the above two observations, (1), (2),... (p-1) are 

distinct elements of S
1 2 ( 1) (1) (2) ( 1) ( 1) ( 2) ( ( 1))1ꞏ2 ꞏ... ꞏ(p-1)  (1)ꞏ(2)ꞏ...ꞏ(p-1)  (aꞏ1)ꞏ(aꞏ2)ꞏ…ꞏ(aꞏ(p-1))

 ap-1 (1ꞏ2 ꞏ... ꞏ(p-1)) (mod p)
since gcd(j p) = 1 for j  S we can divide both side by 1 2
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since gcd(j, p) = 1 for j  S, we can divide both side by 1, 2, 
3, … p-1, and obtain ap-11 (mod p)

Fermat’s Little TheoremFermat s Little Theorem
 Ex: 210 = 1024  1 (mod 11)( )

253 = (210)523  1523  8 (mod 11)
i.e. 253  253 mod 10  23  8 (mod 11)( )

 if n is prime then 2n-1  1 (mod n) if n is prime, then 2  1 (mod n)
i.e. if 2n-1  1 (mod n) then n is not prime ()
usually if 2n-1  1 (mod n) then n is primeusually, if 2  1 (mod n), then n is prime
 exceptions: 2561-1  1 (mod 561) although 561 = 3ꞏ11ꞏ17

1729 121729-1  1 (mod 1729) although 1729 = 7ꞏ13ꞏ19
 () is a quick test for eliminating composite number
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Euler’s Totient Function (n)Euler s Totient Function (n)
(n): the number of integers 1a<n s.t. gcd(a,n)=1
ex. n=10, (n)=4     the set is {1,3,7,9}

properties of (•)p p ( )
(p) = p-1, if p is prime
(pr) = pr - pr-1=(1-1/p) ꞏ pr if p is prime(p ) = p - p =(1-1/p)  p , if p is prime
(nꞏm) = (n) ꞏ (m)  if  gcd(n,m)=1                排容原理

n m (n (n)) m (m (m)) n + (n (n)) (m (m)) = (n) (m)n m - (n-(n)) m - (m-(m)) n + (n-(n)) (m-(m)) = (n) (m)
(nꞏm) =
((d /d /d )2)ꞏ(d 3)ꞏ(d 3)ꞏ(n/d /d )ꞏ(m/d /d )((d1/d2/d3) ) (d2 ) (d3 ) (n/d1/d2) (m/d1/d3)

if  gcd(n,m)=d1, gcd(n/d1,d1)=d2, gcd(m/d1,d1)=d3

( )  (1 1/ )p|n
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(n) = n   (1-1/p)

 ex. (10)=(2-1)ꞏ(5-1)=4     (120)=120(1-1/2)(1-1/3)(1-1/5)=32

p|n

How large is (n)?How large is (n)?
(n)  n ꞏ 6/2 as n goes large
 Probability that a prime number p is a factor of a random 

number r is 1/pu be s /p

p 2p 3p 4p

 Probability that two independent random numbers r1 and r2
b h h i i b i / 2

p       2p       3p      4p

both have a given prime number p as a factor is 1/p2

 The probability that they do not have p as a common factor 
is thus 1 – 1/p2

 The probability that two numbers r1 and r2 have no common 
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p y 1 2
prime factor is  P = (1-1/22)(1-1/32)(1-1/52)(1-1/72)…

Pr{ r and r relatively prime }Pr{ r1 and r2 relatively prime }
 Equalities: 1

1 + 1/22 + 1/32 + 1/42 + 1/52 + 1/62 + = 2/6

= 1+x+x2+x3+…1
1-x

 P = (1-1/22)(1-1/32)(1-1/52)(1-1/72) ꞏ ...
((1+1/22+1/24+ )(1+1/32+1/34+ ) )-1

1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + …   /6

= ((1+1/22+1/24+...)(1+1/32+1/34+...) ꞏ ...) 1

= (1+1/22+1/32+1/42 +1/52 +1/62+…)-1

= 6/2

 0.610.61
each positive number has a unique prime number factorization
ex 452 = 34 ꞏ 52
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ex.    45 = 3  5

How large is (n)?How large is (n)?
 (n) is the number of integers less than n that are relative 

prime to n
 (n)/n is the probability that a randomly chosen integer is ( ) p y y g

relatively prime to n
 Therefore, (n)  n ꞏ 6/2 Therefore, (n) n  6/
 Pn = Pr { n random numbers have no common factor } 

 n independent random numbers all have a given prime p as a n independent random numbers all have a given prime p as a 
factor is 1/pn

 They do not all have p as a common factor 1 – 1/pn They do not all have p as a common factor 1 – 1/p
 Pn = (1+1/2n+1/3n+1/4n +1/5n +1/6n+…)-1 is the Riemann zeta 

function (n) http://mathworld.wolfram.com/RiemannZetaFunction.html
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function (n) http://mathworld.wolfram.com/RiemannZetaFunction.html

 Ex. n=4, (4) = 4/90  0.92



Euler’s TheoremEuler s Theorem
 If gcd(a,n)=1  then  a(n)  1 (mod n)

This is true even when n = p2

g ( , ) ( )
 let S be the set of integers 1x<n, with gcd(x, n) = 1,

define (x)  a ꞏ x (mod n) be a mapping : SZ
Proof:

x  S and gcd(a, n) = 1, 
(x)  0 (mod n) 

d( ( ) ) 1  S ( ) S i S S

if (x)  a ꞏ x  0 (mod n)  x  0 (mod n)

gcd(a, n)=1 and gcd(x, n) = 1
gcd((x), n) = 1       x  S, (x)  S, i.e. : SS

 x, y  S, ‘if x  y then (x)  (y) (mod n)’
if ( ) ( ) i d( ) 1

 from the above two observations, xS, (x) are distinct 
elements of S (i.e. {(x) | xS} is S)

if (x)  (y)  a ꞏ x  a ꞏ y  x  y since gcd(a, n) = 1

elements of S (i.e. {(x) | xS} is S)
  x   (x)  a(n)  x    (mod n)

xS xS xS
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since gcd(x, n) = 1 for x  S, we can divide both side by x 
 S one after another, and obtain a(n)1 (mod n)

Euler’s TheoremEuler s Theorem
Example: What are the last three digits of 7803?Example: What are the last three digits of 7 ?

i.e. we want to find 7803 (mod 1000)
1000 23 53 (1000) 1000(1 1/2)(1 1/5) 4001000 = 23ꞏ53,    (1000) = 1000(1-1/2)(1-1/5) = 400
7803  7803 (mod 400)  73  343 (mod 1000)

Example: Compute 243210 (mod 101)?
101 = 1 ꞏ 101,            (101) = 100
243210  243210 (mod 100)  210  1024  14 (mod 101)( )
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A second proof of Euler’s TheoremA second proof of Euler s Theorem
Euler’s Theorem:  aZn

*, a(n)  1 (mod n)n , ( )

 We have proved the above theorem by showing that the We have proved the above theorem by showing that the 
function (x)  a ꞏ x (mod n) is a permutation.

 We can also prove it through Fermat’s Little Theorem We can also prove it through Fermat s Little Theorem
consider n = p ꞏ q,  
aZ * ap-1  1 (mod p)  (ap-1)q-1  a(n)  1 (mod p)aZp , a  1 (mod p)  (a )  a  1 (mod p) 
aZq

*, aq-1  1 (mod q)  (aq-1)p-1  a(n)  1 (mod q) 
from CRT, a  Z * (i.e. p | a and q | a),from CRT, a  Zn (i.e. p | a and q | a),

a(n)  1 (mod n)
note: the above proof is not valid when p=q
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note: the above proof is not valid when p=q

Carmichael TheoremCarmichael Theorem
Carmichael’s Theorem:  
aZn

*, a(n)  1 (mod n)  and anꞏ(n)  1 (mod n2)
where n p q p q (n) lcm(p 1 q 1) (n) | (n)where n=pꞏq, p  q, (n) = lcm(p-1, q-1), (n) | (n)

 like Euler’s Theorem, we can prove it through Fermat’s 
Little Theorem, consider n = p ꞏ q, where pq,  
aZp

*, ap-1  1 (mod p)  (ap-1)(q-1)/gcd(p-1,q-1)  a(n)  1 (mod p) p

aZq
*, aq-1  1 (mod q)  (aq-1)(p-1)/gcd(p-1,q-1)  a(n)  1 (mod q) 

from CRT, a  Zn
* (i.e. p | a and q | a), a(n)  1 (mod n)n

therefore, aZn
*, a(n) = 1 + k ꞏ n

raise both side to the n-th power, we get anꞏ(n) = (1 + k ꞏ n)n,
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p g ( )
 anꞏ(n) = 1 + nꞏkꞏn + ... a  Zn

* (or Zn2*), anꞏ(n)  1 (mod n2)



Basic Principle to do ExponentiationBasic Principle to do Exponentiation

Let a, n, x, y be integers with n1, and gcd(a,n)=1 
if x  y (mod (n)), then ax  ay (mod n).

 If you want to work mod n, you should work mod 
(n) or (n) in the exponent.
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Primitive Roots modulo pPrimitive Roots modulo p
When p is a prime number a primitive rootWhen p is a prime number, a primitive root 

modulo p is a number whose powers yield every 
nonzero element mod p (equivalently the order ofnonzero element mod p. (equivalently, the order of 
a primitive root is p-1)

ex:  313, 322, 336, 344, 355, 361 (mod 7)
3 is a primitive root mod 73 is a primitive root mod 7

 sometimes called a multiplicative generator
 there are plenty of primitive roots, actually (p-1)

 ex. p=101, (p-1)=100ꞏ(1-1/2)ꞏ(1-1/5)=40
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p=143537, (p-1)=143536ꞏ(1-1/2)ꞏ(1-1/8971)=71760

Primitive Testing ProcedurePrimitive Testing Procedure
 How do we test whether h is a primitive root modulo p?

 naïve method: 
go through all powers h2, h3, …, hp-2, and make sure  1 

modulo pmodulo p
 faster method: 

assume p-1 has prime factors q1, q2, …, qn,assume p 1 has prime factors q1, q2, …, qn,
for all qi, make sure h(p-1)/qi modulo p is not 1, 
then h is a primitive rootp

Intuition: let h  ga(mod p), if gcd(a, p-1)=d (i.e. ga is not a 
( )/ / ( )primitive root), (ga) (p-1)/qi  (ga/qi)(p-1)  1 (mod p) for

some qi | d
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Primitive Testing Procedure (cont’d)Primitive Testing Procedure (cont d)
 Procedure to test a primitive g:

assuming p-1 has prime factors q1, q2, …, qn, (i.e. p-1 =q1
r1...qn

rn)
for all q i, make sure g(p-1)/qi (mod p) is not 1qi, g ( p)

Proof:
(a) by definition, gordp(g)  1 (mod p), g(p)  1 (mod p) therefore ord (g)  (p)(a) by definition, g p 1 (mod p), g 1 (mod p) therefore ordp(g)  (p)

if (p) = ordp(g) * k + s  with  s < ordp(g)
g(p)  gordp(g) * k gs  gs  1 (mod p), but s < ordp(g)  s = 0 p

 ordp(g) | (p) and ordp(g)  (p)
(b) assume g is not a primitive root i.e ordp(g) < (p)=p-1 

th  i h th t d ( ) | ( 1)/ i (p 1)/q 1 ( d ) fthen  i,  such that ordp(g) | (p-1)/q i         i.e. g (p-1)/q i  1 (mod p) for some q
i

(c) if for all q i, g (p-1)/q i  1 (mod p) 
then ord (g) = (p) and g is a primitive root modulo p
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then ordp(g) (p) and g is a primitive root modulo p



Number of Primitive Root in Z *Number of Primitive Root in Zp
 Why are there (p-1) primitive roots?

 let g be a primitive root (the order of g is p-1)
 g, g2, g3, …, gp-1 is a permutation of 1,2,…p-1

( 1)/d /d ( 1)

an integer 
less than p-1

 if gcd(a, p-1)=d, then (ga) (p-1)/d  (ga/d)(p-1)  1 (mod p) which
says that the order of ga is at most (p-1)/d, therefore, ga is not a 
primitive root  There are at most (p 1) primitive roots in Z *primitive root  There are at most (p-1) primitive roots in Zp

 For an element ga in Zp
* where gcd(a, p-1) = 1, it is guaranteed 

that (ga)(p-1)/qi  1 (mod p) for all q (q is factors or p-1)that (g ) i  1 (mod p) for all qi (qi is factors or p-1)
assume that for a certain qi, (g

a)(p-1)/qi  1 (mod p)
 p-1 | a ꞏ (p-1) / qip | (p ) qi
  integer k, a ꞏ (p-1) / qi = k ꞏ (p-1)   i.e. a = k ꞏ qi
 qi | a 
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 qi | gcd(a, p-1)  contradiction

Multiplicative Generators in Z *Multiplicative Generators in Zn
How do we define a multiplicative generator in 

Zn
* if n is a composite number?

Is there an element in Z * that can generate all elementsIs there an element in Zn that can generate all elements 
of Zn

*?
If n = p q the answer is negative From CarmichaelIf n = p ꞏ q, the answer is negative.  From Carmichael 

theorem, aZn
*, a(n)  1 (mod n), gcd(p-1, q-1) is at 

least 2 (n) = lcm(p 1 q 1) is at most (n) / 2 Theleast 2, (n) = lcm(p-1, q-1) is at most (n) / 2.  The 
size of a maximal possible multiplicative subgroup in 
Z * is therefore less than (n)Zn is therefore less than (n).

How many elements in Zn
* can generate the maximal 

ibl b f Z *?
22

possible subgroup of Zn
*?

Finding Square Roots mod nFinding Square Roots mod n
For example: find x such that x2  71 (mod 77)For example: find x such that x  71 (mod 77)
Is there any solution?

l i hHow many solutions are there?
How do we solve the above equation systematically?

 In general: find x s.t. x2  b (mod n), 
h b QR d i bwhere b  QRn , n = pꞏq, and p, q are prime numbers

Easier case: find x s.t. x2  b (mod p), ( p)
where p is a prime number, b  QRp
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Note: QRn is “Quadratic Residue in Zn
*” to be defined later

Finding Square Root mod pFinding Square Root mod p
Gi Z * fi d t 2 ( d ) i iGiven yZp

*, find x, s.t. x2  y (mod p), p is prime
p  1 (mod 4) (i.e. p = 4k + 1) : probabilistic algorithm

Two cases:
p  3 (mod 4) (i.e. p = 4k + 3) : deterministic algorithm

 Is there any solution?

Two cases:

y

check      y       1 (mod p)          Is y a QRp??
p-1
2

p  3 (mod 4)
 ( d )

p+1
4x   y      (mod p) 

 (p+1)/4 = (4k+3+1)/4 = k+1 is an integer
2 ( +1)/2 ( 1)/2

4
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 x2 = y(p+1)/2 = y(p-1)/2 ꞏ y  y (mod p)



Finding Square Root mod pFinding Square Root mod p
p  1 (mod 4)p  1 (mod 4)
Peralta, Eurocrypt’86, p = 2s q + 1
3 t b bili ti d3-step probabilistic procedure

1. Choose a random number r, if r2  y (mod p), output x = r
2 Calc late ( + )(p-1)/2 + (mod f( )) f( ) 22. Calculate (r + z)(p 1)/2  u + v z (mod f(z)),   f(z) = z2-y
3. If u = 0 then output x  v-1 (mod p), else goto step 1

note:  (b+cz)(d+ez)  (bd+ce z2) + (be+cd) z
 (bd+ce y) + (be+cd) z (mod z2-y) (bd+ce y) + (be+cd) z (mod z y)

use square-multiply algorithm to calculate (r + z)(p-1)/2
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 the probability to successfully find x for each r  1/2

Finding Square Root mod p
ex: finding x such that x2  12 (mod 13)

Finding Square Root mod p
ex:   finding x such that x  12 (mod 13)

solution:
13 1 ( d 4)13  1 (mod 4)

choose  r = 3, 32 = 9  12
( )(13 1)/2 ( )6 ( d 2 ) (3 + z)(13-1)/2 = (3 + z)6  12 + 0 z    (mod z2-12)

choose  r = 7, 72  10  12
(13 1)/2 6 2 (7 + z)(13-1)/2 = (7 + z)6  0 + 8 z (mod z2-12)

 x = 8-1 = 5  (mod 13)

Why does it work???
Wh i h b bili ½ ???

26

Why is the success probability > ½ ???

Finding Square Roots mod nFinding Square Roots mod n
Now we return to the question of solving squareNow we return to the question of solving square 

roots in Zn
*, i.e. 

for an integer yQRn, 
find xZ * such that x2  y (mod n)find xZn such that x  y (mod n)

We would like to transform the problem into 
l i dsolving square roots mod p.

Question: for  n=pꞏqQ p q
Is solving “x2  y (mod n)” equivalent to solving 

2 2
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“x2  y (mod p) and x2  y (mod q)”??? 

Finding Square Roots mod p qFinding Square Roots mod pꞏq
 find x such that x2  71 (mod 77) find x such that x  71 (mod 77)

 77 = 7 ꞏ 11 
 “x* satisfies f(x*)  71 (mod 77)”  “x* satisfies both x  satisfies f(x )  71 (mod 77)    x  satisfies both 

f(x*)  1 (mod 7) and f(x*)  5 (mod 11)”
 since 7 and 11 are prime numbers, we can solve x2  1 (mod 7) p ( )

and x2  5 (mod 11) far more easily than x2  71 (mod 77)
x2  1 (mod 7) has two solutions: x  1 (mod 7) 
x2  5 (mod 11) has two solutions: x  4 (mod 11)x2  5 (mod 11) has two solutions: x  4 (mod 11) 

 put them together and use CRT to calculate the four solutions
x  1 (mod 7)  4 (mod 11)  x  15 (mod 77) 
x  1 (mod 7)  7 (mod 11)  x  29 (mod 77) 
x  6 (mod 7)  4 (mod 11)  x  48 (mod 77) 
x  6 (mod 7)  7 (mod 11)  x  62 (mod 77) 
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Computational Equivalence to FactoringComputational Equivalence to Factoring
 Previous slides show that once you know the factoring of ev ous s des s ow t at o ce you ow t e acto g o

n to be p and q, you can easily solve the square roots of n
 Indeed if you can solve the square roots for one single Indeed, if you can solve the square roots for one single 

quadratic residue mod n, you can factor n.
 from the four solutions a b on the previous slide from the four solutions a, b on the previous slide

x  c (mod p)  d (mod q)  x  a (mod pꞏq) 
x  c (mod p)  -d (mod q)  x  b (mod pꞏq) 
x  -c (mod p)  d (mod q)  x  -b (mod pꞏq) 
x  -c (mod p)  -d (mod q)  x  -a (mod pꞏq)

we can find out a  b (mod p) and a  -b (mod q)we can find out a b (mod p) and  a b (mod q)
(or equivalently a  -b (mod p) and  a  b (mod q))

 therefore, p | (a-b) i.e. gcd(a-b, n) = p  (ex. gcd(15-29, 77)=7)
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q | (a+b) i.e. gcd(a+b, n) = q  (ex. gcd(15+29, 77)=11)

Quadratic ResiduesQuadratic Residues
 Consider yZn

*, if  x Zn
*, such that x2  y (mod n), Consider yZn , if  x Zn , such that x y (mod n), 

then y is called a quadratic residue mod n,  i.e. yQRn

 If the modulus is a prime number p there are (p 1)/2 If the modulus is a prime number p, there are (p-1)/2
quadratic residues in Zp

*

 l t b i iti t i Z * { 2 3 p-1} i let g be a primitive root in Zp
*, {g, g2, g3, …, gp 1} is a 

permutation of {1,2,…p-1}
2 4 1 in the above set, {g2, g4,…, gp-1} are quadratic 

residues (QRp)
{g, g3,…, gp-2} are quadratic non-residues (QNRp),  

out of which there are (p-1) primitive roots
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Quadratic Residues in Z *Quadratic Residues in Zp
1st proof:
For each xZp

*, p-x  x (mod p) (since if x is odd, 
p-x is even), it’s clear that x and p-x are both square p s eve ), t s c ea t at a d p a e bot squa e
roots of a certain yZp

*, 
Because there are only p-1 elements in Z * we knowBecause there are only p-1 elements in Zp , we know 

that |QRp|  (p-1)/2
Beca se | { 2 4 p-1} | (p 1)/2 there can be noBecause | {g2, g4,…, gp 1} | = (p-1)/2, there can be no 

more quadratic residues outside this set.  Therefore, 
the set { 3 p-2} contains only quadratic nonthe set {g, g3,…, gp 2} contains only quadratic non-
residues 
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Quadratic Residues in Z *Quadratic Residues in Zp
2nd proof:

 Because the squares of x and p-x are the same, the number of 
quadratic residues must be less than p-1 (i.e. some element in Zp

*

t b d ti id )must be quadratic non-residue)
 Consider this set {g, g3,…, gp-2} directly

f Q h b i i i (b k ll b If gQRp , then g cannot be a primitive (because gk must all be 
quadratic residues)

 If 2k+1 2k QR th th i t Z * h th t 2 2k If g2k+1g2k ꞏ gQRp , then there exists an xZp such that x2g2k ꞏ 
g (mod p)

 Because gcd(g2k p)=1 g x2 ꞏ (g2k)-1 (xꞏ(g-1)k)2 QR Because gcd(g2k, p)=1, g x2 ꞏ (g2k) (xꞏ(g 1)k)2 QRp
contradiction

 i e g2k+1 QNR (g2k)-1(g2k)  (g2k)-1gꞏgꞏ…ꞏg  1 (mod p)
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 i.e. g QNRp
(g ) (g ) (g ) g g g ( p)
 (g2k)-1  g-1ꞏg-1ꞏ…ꞏg-1  (g-1)2k  ((g-1)k)2



Quadratic Residues in Z *Quadratic Residues in Zp
 ex. p=143537, p-1=143536=24ꞏ8971, 

(p-1)=24ꞏ8971ꞏ(1-1/2)ꞏ(1-1/8971)=71760 
primitives, p ,

(p-1)/2=71768 QRp’s  and 71768 QNRp’s
 Note: if g is a primitive, then g3, g5 … are also primitivesg p , g , g p

except the following 8 numbers g8971, g8971ꞏ3,... g8971ꞏ15

 Elements in Zp
* can be classified further according to their order Elements in Zp can be classified further according to their order

since xZp
*, ordp(x) | p-1, we can list all possible orders

ordp(x) p-1 p-1
2

p-1
4

p-1
8

p-1
16

p-1
8971

p-1
8971ꞏ2

p-1
8971ꞏ4

p-1
8971ꞏ8

p-1
8971ꞏ16

QNRp QNRpQRp QRpQRpQRp QRp QRp QRp QRp
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(p-1) 8#

Composite Quadratic ResiduesComposite Quadratic Residues
 If y is a quadratic residue modulo n, it must be a If y is a quadratic residue modulo n, it must be a 

quadratic residue modulo all prime factors of n.
 xZn

*  s.t. x2  y (mod n)  x2 = kꞏn + y = kꞏpꞏq + yn y ( ) y p q y
 x2  y (mod p) and x2  y (mod q)

 If y is a quadratic residue modulo p and also a quadratic 
residue modulo q, then y is a quadratic residue modulo n.

 r1Zp
* and r2Zq

* such that 
2 ( d ) ( d )2 ( d )y  r1
2 (mod p)  (r1 mod p)2 (mod p)  

 r2
2 (mod q)  (r2 mod q)2 (mod q)

from CRT ! r Z * such that r  r1 (mod p)  r2 (mod q)from CRT, ! r Zn such that r  r1 (mod p)  r2 (mod q)
therefore, y  r2 (mod p)  r2 (mod q)
again from CRT, y  r2 (mod pꞏq)
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g , y ( p q)

Legendre SymbolLegendre Symbol
 Legendre symbol L(a, p) is defined when a is any integer, 

p is a prime number greater than 2
 L(a, p) = 0 if p | a
 L( ) 1 if i d ti id d L(a, p) = 1 if a is a quadratic residue mod p
 L(a, p) = -1 if a is a quadratic non-residue mod p

 T th d t t ( / ) Two methods to compute (a/p)
 (a/p) = a(p-1)/2 (mod p)

i l l l b ( b ) ( ) (b ) recursively calculate by L(a ꞏ b, p) = L(a, p) ꞏ L(b, p)
1. If a = 1, L(a, p) = 1
2 If a is even L(a p) = L(a/2 p)ꞏ( 1)(p2-1)/82. If a is even, L(a, p) = L(a/2, p) (-1)(p 1)/8

3. If a is odd prime, L(a, p) = L((p mod a), a)ꞏ(-1)(a-1)(p-1)/4

 Legendre symbol L(a p) = 1 if a  QNR
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 Legendre symbol L(a, p) = -1 if a  QNRp 

L(a, p) = 1 if a  QRp 

Legendre SymbolLegendre Symbol
yQRp  y(p-1)/21 (mod p)

()
 If yQRpy Q p

 Then xZp
* such that yx2 (mod p)

 Therefore, y(p-1)/2  (x2)(p-1)/2  x(p-1)  1 (mod p), y ( ) ( p)
()

 If yQR i e yQNR If yQRp i.e. yQNRp

 Then yg2k+1 (mod p)
 Therefore y(p-1)/2  (g2k ꞏ g)(p-1)/2  gk(p-1) g(p-1)/2 g(p-1)/2 1 (mod p) Therefore, y(p 1)/2  (g2k ꞏ g)(p 1)/2  gk(p 1) g(p 1)/2 g(p 1)/2 1 (mod p)
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ordp(g) = p-1



Jacobi SymbolJacobi Symbol
 Jacobi symbol J(a, n) is a generalization of the 

Legendre symbol to a composite modulus n
 If n is a prime J(a n) is equal to the Legendre If n is a prime, J(a, n) is equal to the Legendre 

symbol i.e. J(a, n)  a(n-1)/2(mod n)
 Jacobi symbol can not be used to determine 

whether a is a quadratic residue mod n (unless n q (
is a prime)
ex J(7 143) = J(7 11)ꞏJ(7 13) = (-1)ꞏ(-1) = 1ex. J(7, 143)  J(7, 11) J(7, 13)  ( 1) ( 1)  1

however, there is no integer x such that 
x2  7 (mod 143)
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x  7 (mod 143)

Calculation of Jacobi SymbolCalculation of Jacobi Symbol
 The following algorithm computes the Jacobi symbol J(a, n), for any 

integer a and odd integer n, recursively:integer a and odd integer n, recursively:
 Def  1: J(0, n) = 0 also If n is prime, J(a, n) = 0 if n|a
 Def  2: If n is prime, J(a, n) = 1 if a QRn and  J(a, n) = -1 if a QRn

 Def  3: If n is a composite, J(a, n) = J(a, p1ꞏp2…ꞏpm) = J(a,p1)ꞏJ(a,p2)…ꞏJ(a,pm)
 Rule 1: J(1, n) = 1
 Rule 2: J(aꞏb, n) = J(a, n) ꞏ J(b, n)
 Rule 3: J(2, n) = 1 if (n2-1)/8 is even and J(2, n) = -1 otherwise
 R l 4 J( ) J( d ) Rule 4: J(a, n) = J(a mod n, n)
 Rule 5: J(a, b) = J(-a, b) if a <0 and (b-1)/2 is even, 

J(a, b) = -J(-a, b) if a<0 and (b-1)/2 is odd
 Rule 6: J(a, b1ꞏb2) = J(a, b1) ꞏ J(a, b2)
 Rule 7: if gcd(a, b)=1, a and b are odd

( b) (b ) if ( 1) (b 1)/4 i
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 7a: J(a, b) = J(b, a) if (a-1)ꞏ(b-1)/4 is even
 7b: J(a, b) = -J(b, a) if (a-1)ꞏ(b-1)/4 is odd 

QR and Jacobi SymbolQRn and Jacobi Symbol
 Consider n = pꞏq, where p and q are prime numbers

xZn
*, x QRn

 x QRp and x QRqQ p Q q

 J(x, p) = x(p-1)/2  1 (mod p) and  J(x, q) = x(q-1)/2  1 (mod q)
 J(x, n) = J(x, p) ꞏ J(x, q) = 1( , ) ( , p) ( , q)

J(x p) J(x q) J(x n)J(x, p) J(x, q)

1 1Q00

J(x, n)
1 xQRn

QNR-11
1-1

Q01

Q10

-1
-1

xQNRn

xQNRn
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-1 -1Q11 1 xQNRn

Wilson’s TheoremWilson s Theorem
(p-1)!  -1 (mod p)

Proof:
Goal: (p-1)!  1 ꞏ 2 ꞏ 3 ꞏ ꞏ ꞏ (p-1)  -1  (p-1) (mod p)Goal: (p 1)! 1 2 3    (p 1) 1 (p 1) (mod p)
 Since gcd(p-1, p) = 1, the above is equivalent to (p-2)!1(mod p)
 e g p = 5 3 ꞏ 2 ꞏ 1  1 (mod 5) e.g. p  5,   3  2  1  1 (mod 5)

p = 7,    5 ꞏ 4 ꞏ 3 ꞏ 2 ꞏ 1  1 (mod 7)
We know that 1-1  1 (mod p) and (-1)-1  -1 (mod p)We know that 1  1 (mod p) and (-1)  -1 (mod p)
 Claim: iZp

*\{1,-1}, i-1  i (pf: if i-1  i then i2  1, i{1,-1})
 Claim: i i Z *\{1 1} i -1  i -1 (pf: if i -1i -1 then i ꞏ i -1 1 Claim: i1i2Zp \{1,-1}, i1  i2 (pf: if i1 i2 then i1  i2  1 

i.e. i1i2 , contradiction)
 Out of the set {2 3 p-2} we can form (p-3)/2 pairs such that
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 Out of the set {2, 3, … p 2}, we can form (p 3)/2 pairs such that
i ꞏ j  1 (mod p), multiply them together, we obtain (p-2)!  1



Another ProofAnother Proof
()

yQRp  y(p-1)/21 (mod p)
()

 If yQRp

Th  Z * h h 2 ( d ) Then xZp
* such that yx2 (mod p)

 Therefore, y(p-1)/2  (x2)(p-1)/2  x(p-1)  1 (mod p)
()()

 Since iZp
*, gcd(i, p)=1, j such that iꞏj  y (mod p)

 If QR th 2 ( d ) h l ti If yQRp, the congruence x2  y (mod p) has no solution, 
therefore, j  i (mod p)

We can group the integers 1 2 p 1 into (p 1)/2 pairs (i j)We can group the integers 1, 2, …, p-1 into (p-1)/2 pairs (i, j), 
each satisfying iꞏj  y (mod p)

Multiply them together we have (p-1)!  y(p-1)/2 (mod p)
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Multiply them together, we have (p-1)!  y(p ) (mod p)
 From Wilson’s theorem, y(p-1)/2  -1 (mod p)

Exactly Two Square RootsExactly Two Square Roots
Every yQRp has exactly two square roots

i e x and p x such that x2y (mod p)i.e. x and p-x such that x2y (mod p)
 QRp = {g2, g4,…, gp-1}, |Zp

*| = p-1, and |QRp| = (p-1)/2
 For each yg2k in QR there are at least two distinct xZ * s t

pf:
 For each yg in QRp, there are at least two distinct xZp s.t. 

x2y (mod p), i.e., gk and p-gk (if one is even, the other is odd)
 Since |QRp| = (p-1)/2, we can obtain a set of p-1 square roots |Q p| (p ) , p q

S={g, p-g, g2, p-g2,…,g(p-1)/2, p-g(p-1)/2}
 Claim: the elements of S are all distinct (1. gi  gj (mod p) when 

i j i i i iti 2 i  j ( d ) h i j th iij since g is a primitive, 2. gi -gj (mod p) when ij, otherwise 
(gi+gj)(gi-gj)g2i-g2j0 (mod p) implies ij (mod (p-1)/2), 
3. gi  -gi (mod p) since if one is even, the other is odd)g g ( p) , )

 If there is one more square root z of yg2k which is not gk and 
-gk , it must belong to S (which is Zp

*), say gj, jk, which would 
i l th t 2j 2k ( d ) d l d t t di ti
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imply that g2j  g2k (mod p), and leads to contradiction

Order q Subgroup G of Z *Order q Subgroup Gq of Zp
 Let p be a prime number, g be a primitive in Zp

*

 Let p = k ꞏ q + 1    i.e.  q | p-1     where q is also a prime number
 Let Gq = {gk, g2k, …,gq ꞏ k 1}
 Is Gq a subgroup in Zp

*?  YES
 x, y  Gq, it is clear that z  gi ꞏ k  x ꞏ y  g(i1+i2) ꞏ k (mod p) 
is also in Gq, where i  i1 + i2 (mod q)

 Is the order of the subgroup Gq q?  YES
 i1, i2  Zq, i1  i2,  gi1 ꞏ k  gi2 ꞏ k (mod p) otherwise g is not a 
primitive in Zp

*, also gq ꞏ k 1 (mod p)p

 How many generators are there in Gq?  (q)=q-1
a. there are (p-1) generators in Zp

*={g1, g2, …,gx, …,gp-1}, since 

43

p

gcd(p-1, x) = d > 1 implies that ordp(g
x) = (p-1)/d

Order q Subgroup G (cont’d)Order q Subgroup Gq (cont d)
also (gx)y  1 (mod p) and gp-1  1 (mod p) implies that either
x ꞏ y | p-1  or  p-1 | x ꞏ y, gcd(x, p-1) = 1 implies that p-1 | y
therefore, ordp(g

x) = p-1
b h ( ) i i i i G { k 2k q ꞏ k 1} ib. there are (q) primitives in Gq = {gk, g2k, …, gq ꞏ k 1} since

q is also a prime number
 I G i d b i Z * ? YES Is Gq a unique order q subgroup in Zp ? YES

Let S be an order-q cyclic subgroup, S= {g, g2, …, gq 1}.  Since 
p is prime  a unique k th root g  Z * s t g  g k (mod p)p is prime,  a unique k-th root g1  Zp ,  s.t. g  g1

k (mod p)
Let g1  g be another primitive, clearly g1  gs (mod p),
Is the set S={g1

k g1
2k g1

q ꞏ k 1} different from G ?Is the set S {g1 , g1 , …, g1 1} different from Gq?
let x  S, i.e. x  g1

i1ꞏk (mod p), i1  Zq
x  g1

i1ꞏk  gsꞏi1ꞏk  giꞏk (mod p) where i  s ꞏ i1 (mod q), i.e. S  Gq
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g1 g g ( p) 1 ( q),  q
The proof is similar for Gq  S.  Therefore, S = Gq



Gauss’ LemmaGauss  Lemma
Lemma:  let p be a prime, a is an integer s.t. gcd(a, p)=1,

d fi j ( d )}define j  jꞏa (mod p)}j=1,…,(p-1)/2,
let n be the number of j’s s.t. j > p/2 then L(a, p) = (-1)n

pfpf.
 j  {r1, …, rn} if j > p/2 and j  {s1, …, s(p-1)/2-n} if j  p/2
 Since gcd(a p)=1 ri and si are all distinct and non-zero Since gcd(a, p) 1, ri and si are all distinct and non zero
 Clearly, 0 < p-ri  p/2 for i=1,…,n
 no p-ri is an sj: if p-ri=sj then sj  -ri (mod p) no p ri is an sj:     if p ri sj then sj  ri (mod p)

rewrite in terms of a:  u a  -v a (mod p) where 1  u, v  (p-1)/2 
 u  -v (mod p) where 1  u v  (p-1)/2  impossible u  -v (mod p) where 1  u, v  (p-1)/2  impossible

 {s1, …, s(p-1)/2-n, p-r1, …, p-rn} is a reordering of {1, 2,…, (p-1)/2}
 Thus ((p 1)/2)!  s ꞏꞏꞏs ꞏ( r )ꞏꞏꞏ( r )  ( 1)n s ꞏꞏꞏs ꞏr ꞏꞏꞏr
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 Thus, ((p-1)/2)!  s1ꞏꞏꞏs(p-1)/2-nꞏ(-r1)ꞏꞏꞏ(-rn)  (-1)n s1ꞏꞏꞏs(p-1)/2-nꞏr1ꞏꞏꞏrn   

 (-1)n ((p-1)/2)! a(p-1)/2 (mod p)   L(a, p) = (-1)n �

Theorem: J(2 p) = ( 1)(p2-1)/8Theorem: J(2, p) = (-1)(p 1)/8
Theorem: let p be a prime, gcd(a, p) = 1 then L(a, p) = (-1)t

(p-1)/2
where t =  jꞏa/p.  Also L(2, p) = (-1)(p2-1)/8

pf.
j=1

(p-1)/2

p .

 j  {r1, …, rn} if j > p/2 and j  {s1, …, s(p-1)/2-n} if j  p/2
 j a = p jꞏa/p + j for j=1, …, (p-1)/2 j a  p j a/p  j for j 1, …, (p 1)/2

 j a =    p jꞏa/p +  rj +     sj
j=1

(p-1)/2

j=1

(p-1)/2

j=1

n

j=1

(p-1)/2-n

 {s1, …, s(p-1)/2-n, p-r1, …, p-rn} is a reordering of {1, 2,…, (p-1)/2}

 j =  (p-rj) +  sj = np -  rj +  sj
(p-1)/2 n (p-1)/2-n n (p-1)/2-n

 j   (p rj)     sj  np  rj     sj

 Subtracting the above two equations, we have
j=1 j=1 j=1 j=1 j=1
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(a - 1)   j  =  p (    jꞏa/p - n  )  + 2    rj
j=1

(p-1)/2

j=1

(p-1)/2

j=1

n

J(2 p) = ( 1)(p2-1)/8 (cont’d)J(2, p) = (-1)(p 1)/8 (cont d)
  j = 1 + … + (p-1)/2 = (p-1)/2 (1 + (p-1)/2) / 2 = (p2-1)/8

j 1

(p-1)/2
j (p ) (p ) ( (p ) ) (p )

 Thus, we have    (a-1) (p2-1)/8   jꞏa/p - n   (mod 2)
j=1

j=1

(p-1)/2

 If a is odd, n   jꞏa/p
j=1

(p-1)/2

 If a = 2,   jꞏ2/p = 0 for j=1, …, (p-1)/2,  n  (p2-1)/8 (mod 2)

therefore J(2 p) = (-1)(p2-1)/8

j 1

therefore, J(2, p) = (-1)(p )

�
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Lemma ord k elements in Z *  (k)Lemma. ord-k elements in Zp  (k)
h (k) d k l i * k | 1Lemma. There are at most (k) ord-k elements in Zp

*, k | p-1
pf.
 Zp

* is a field   xk-1 0 (mod p) has at most k roots
 if a is a nontrivial root (a1) then {a0 a1 a2 ak-1} is the if a is a nontrivial root (a1), then {a , a , a , …, a } is the 

set of the k distinct roots.
 In this set those a with gcd( k) = d > 1 have order at most In this set, those a with gcd(, k) = d > 1 have order at most 

k/d. 
 O l th  ith d( k) 1 i ht h d k Only those a with gcd(, k) = 1 might have order k.  
 Hence, there are at most (k) elements (out of k elements) 
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�that have order equal to k.                                  



Lemma  (k) = p 1Lemma. k|p-1 (k) = p-1
Lemma. k|p-1 (k) = p-1|p

pf.
( i * d( ) k)p-1 = k|p-1 (# a in Zp

* s.t. gcd(a, p-1) = k)
= k|p 1 (# b in {1,…,(p-1)/k} s.t. gcd(b, (p-1)/k) = 1)k|p-1 ( { , ,(p ) } g ( , (p ) ) )
= k|p-1 ((p-1)/k)
= k|p-1 (k)                                          �

ex. {(1}, (2), (3), (4), (6), (12)}, p=13

49

Z * is a cyclic groupZp is a cyclic group
Theorem: Zp

* is a cyclic group for a prime number p
pf.

Lemma 1: # of ord-k elements in Zp
*  (k), where  k | p-1

Lemma 2: k|p-1 (k) = p-1
The order k of every element in Zp

* divides p-1y p p
k|p-1 (# of elements with order k)  =  p-1
 (k)  1 bi d ith l 2 k th tk|p-1 (k)  p-1, combined with lemma 2, we know that

# of ord-k elements in Zp
*  (k)

 # of ord-(p-1) elements in Zp
*  (p-1) > 1

 There is at least one generator in Zp
*, i.e. Zp

* is cyclic
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 There is at least one generator in Zp , i.e. Zp is cyclic �

Ex. p=13, p-1 = |{1,5,7,11}| + |{2,10}| + |{3,9}| + |{4,8}| + |{6}|
k=1               k=2         k=3        k=4      k=6

Generators in QRGenerators in QRn
 Number of generators in Zp

*: (p-1)
L t b i iti Z * < > { 2 3 k p 1}Let g be a primitive, Zp

* = <g> = {g, g2, g3, …, gk, …, gp-1}
if gcd(k, p-1) = d  1 then gk is not a primitive 

since (gk)(p-1)/d = (gk/d)p-1 = 1 i e ord (gk)  (p 1)/dsince (gk)(p 1)/d = (gk/d)p 1 = 1, i.e. ordp(gk)  (p-1)/d 
if gcd(k, p-1) = 1 and gk is not a primitive, then d=ordp(gk)  p-1, i.e.

(gk)d = 1; g is a primitive  p-1 | k d  p-1 | d contradiction(g )  1; g is a primitive  p-1 | k d  p-1 | d  contradiction.
 Zn

* is not a cyclic group (n = p q, p=2p'+1, q=2q'+1, (n)=2p'q')
Since x(n)  1 (mod n), there is no generator that can generateSince x 1 (mod n), there is no generator that can generate
all members in Zn

*

 QRn is a cyclic group of order (n)/2 = lcm(p-1, q-1)/2 =  p' q'Q n y g p ( ) (p , q ) p q
 x  Zn

*, x(n)  1 (mod n)     Carmichael’s Theorem
clearly, (x2)(n)/2  1 (mod n), QRn = {x2 |  x  Zn

*}

51

i.e.  y  QRn, ordn(y) | p' q'     (ordn(y){1, p', q', p'q'})

Generators in QR (cont’d)Generators in QRn (cont d)
cyclic?       x*  Zn

* ordn(x*) = (n) = 2 p' q'  
 * ( ( *)2) QR t d ( *) ( )/2 ' ' y* (=(x*)2)  QRn s.t.  ordn(y*) = (n)/2 = p' q'

 Let y be a random element in QRn, the probability that y is a generator 
is close to 1is close to 1

Let y* be a generator of QRn,    
QRn = <y*> = {y*, (y*)2, (y*)3, …, (y*)k, …, (y*)p'q'}Q n y {y , (y ) , (y ) , , (y ) , , (y ) }

if gcd(k, p'q') = d  1 then (y*)k is not a generator 
since ((y*)k)p'q'/d = ((y*)k/d)p'q' = 1, i.e. ordp((y*)k)  (p'q')/d((y ) ) ((y ) ) p((y ) ) (p q )

(p'q') = (p') (q') = (p'-1)(q'-1) = p'q' - p' - q' + 1 
= p'q' - (p'-1) - (q'-1) - 1 

 x  {(y*)q', (y*)2q', …, (y*)(p'-1)q'} ordn(x) = p'
 x  {(y*)p', (y*)2p', …, (y*)(q'-1)p'} ordn(x) = q'
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ordn(1) = 1
Pr{x is a generator | xRQRn} = (p'q') / (p'q') is close to 1



Subgroups in Z *Subgroups in Zn
Consider n = p q, p=2p'+1, q=2q'+1, m=p'q', (n) = lcm(p-1, q-1)=2m,

(n) = (p-1)(q-1) = 4m
 Zn

* is not a cyclic group
 Carmichael’s theorem asserts that no element in Zn

* can generate 
all elements in Zn

*.  (maximum order is 2m instead of 4m)
* However, Zn
* is still a group over modulo n multiplication.

 QRn is a cyclic subgroup of order m = (n)/2, QRn = {x2 |  x  Zn
*}

 J00 = {x  Zn
* | J(x,p)=1 and J(x,q)=1}

 If there exists an element in Zn
* whose order is 2m, then QRn is 

l l li (Will h di i b ?)clearly a cyclic group.  (Will the precondition be true?)
  xZn

* x2m  1 (mod n) implies that  yQRn ordn(y) | p'q' 
i d ( ) i i h 1 ' ' ' ' (if h i d ( )
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i.e. ordn(y) is either 1, p', q', or p'q' (if there is one y s.t. ordn(y)=m
then y is a generator and QRn is cyclic).  Let’s construct one.

Subgroups in Z * (cont’d)Subgroups in Zn (cont d)
Let g1 be a generator in Zp

*, and g2 be a generator in Zq
*

Let g  g1 (mod p)  g2 (mod q), (note that J(g, n) = 1, g  J11)
gp-1  g2p'  g1

2p'  1 (mod p), gq-1  g2q'  g2
2q'  1 (mod q)

 g2p'q'  1 (mod p) and g2q'p'  1 (mod q) i.e. g2p'q'  1 (mod n)
if there exists a k  {1, 2, p', q', 2p', 2q', p'q'} s.t. gk  1 (mod n)

then ordn(g) is not 2p'q'
1. k=1:  g1  1 (mod p) contradict with ordp(g1) = p-1
2. k=p':  gp'  g1

p'  1 (mod p) contradict with ordp(g1) = 2p'
3. k=q':  gq'  g2

q'  1 (mod q) contradict with ordq(g2) = 2q'q

4. k=2:  g1
2  1 (mod p) contradict with ordp(g1) = p-1

5. k=2p':  g2p'  g2
2p'  1 (mod q) contradict with ordq(g2) = 2q'
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q

6. k=2q':  g2q'  g1
2q'  1 (mod p) contradict with ordp(g1) = 2p'

Subgroups in Z * (cont’d)Subgroups in Zn (cont d)
7. k=p'q':  gp'q'  g1

p'q'  1 (mod p)
i 2 ' 1 ( d ) dsince g1

2p'  1 (mod p) and 
gcd(q', 2) = 1   a, b s.t. a q' + b 2 = 1
 g p' g p' (a q' + b 2) g p' q' )a g 2 p')b 1 (mod p) g1

p  g1
p  (a q  + b 2)  g1

p  q  )a g1
2 p )b  1 (mod p)

contradict with ordp(g1) = 2p'
1~7 implies that ord (g) = 2p'q' i e QR = {g2 g4 gp'q'}1~7 implies that ordn(g) = 2p q , i.e.  QRo = {g , g , …, gp q }
and QRn is a cyclic group.

 Pr{Elements in QR being a generator} = (p'q') / (p'q') Pr{Elements in QRn being a generator}  (p q ) / (p q ) 
 Jn is a cyclic subgroup of order 2m = (n), Jn = {x  Zn

* | J(x,n)=1}
 J11 = {x  Zn

* | J(x,p)=-1 and J(x,q)=-1}11 { n | ( ,p) ( ,q) }
 The above proof also shows that Jn = {g, g2, …, g2p'q'} is cyclic
 Pr{Elements in Jn being a generator} = (p'q') / (2p'q') 
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 J01J10 = Zn
* \ {J00J11} is not a subgroup in Zn

*

 if x  J01 then x * x  J00

Generator in QRGenerator in QRn
 n = p q, p=2p'+1, q=2q'+1
 Find a generator in QRn

1. Find a generator g1 of Zp
* (i.e. Zp

* = <g1>) and g2 of Zq
* (i.e. Zq

* = <g2>)
2 C l l t th t h 2 ( d ) f QR d h 2 ( d 1) f QR2. Calculate the generator h1  g1

2 (mod p) of QRp and h2  g2
2 (mod 1) of QRq

3. Let h  h1 (mod p)  h2 (mod q).  
It is clear that h  g2 (mod n), i.e. hQRn, where g  g1 (mod p)  g2 (mod q).It is clear that h g (mod n), i.e. hQRn, where g g1 (mod p) g2 (mod q).  

Claim: h is a generator of QRn

pf.
y  QRn  y  QRp and y  QRq

i.e.  x1 Zp' and x2 Zq' , y  h1
x1 (mod p)  h2

x2 (mod q)
 2 x1 ( d ) 2 x2 ( d ) y  g1

2 x1 (mod p)  g2
2 x2 (mod q)

 y  g 2 x (mod n) if 2 x  2 x1 (mod p-1)  2 x2 (mod q-1)
a unique x  Zp'q' exists by CRT since gcd(p-1, q-1) = gcd(2p', 2q') = 2
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q p q y g (p , q ) g ( p , q )
 y  h x (mod n)



Generate Elements in Z *Generate Elements in Zn
 Zn

* is NOT a cyclic group (n = p q, p=2p'+1, q=2q'+1, m=p' q')
 H d t d l t i Z *? How do we generate random elements in Zn

*?
Zn

* = { ga u-e b1 (-1)b2 | g is a generator in QRn, gcd(e, (n)) = 1,
u Z * and J(u n) = 1uR Zn and J(u,n) = -1,                                       
a{0,…,m-1}, b1{0,1}, and b2{0,1} }

Note: 1 J(-1 n) = 1 and -1  J \QR since (-1)(p-1)/2  (-1)p'  -1 (mod p)Note: 1. J(-1, n)  1 and -1  Jn\QRn since (-1)(p )  (-1)p  -1 (mod p)
2. e is odd, (n)-e is also odd, J(u-e, n) = J(u, n) = -1

 We can view the above as 4 parts We can view the above as 4 parts
1. J00 (QRn): b1 = b2 = 0, J00 = {ga | a{0,…,m-1}}
2. J11 (Jn\QRn): b1 = 0, b2 = 1, J11 = {-ga | a{0,…,m-1}}11 ( n Q n) 1 , 2 , 11 { g | { , , }}
Assume that J(u, p) = -1 and J(u, q) = 1
3. J01: b1 = 1, b2 = 0, J01 = {ga u-e | a{0,…,m-1}}
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4. J10: b1 = 1, b2 = 1, J01 = {-ga u-e | a{0,…,m-1}}
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Lagrange’s Theorem: for any finite group G, the 
order (number of elements) of every subgroup H 
of G divides the order of G.
proof sketch: divide G into left cosets H –

equivalence classes, and  show that they have the 
same size.

 It implies that: the order of any element a of a p y
finite group (i.e. the smallest positive integer 
number k with ak = 1) divides the order of the )
group.  Since the order of a is equal to the order 
of the cyclic subgroup generated by a.  Also, 
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y g p g y ,
a|G| = 1 since order of a divides |G|.


