
C/C++ Programming Style
Guidelines
Fred Richards

Style guidelines and programming practices for C/C++ code for
Dynamic Software Solutions. Use the checklist at the end of this
document prior to submitting code for peer review.

“ De gustibus non est disputandum.”

1. Introduction
This document contains the guidelines for writing C/C++ code for Dynamic Software
Solutions. The point of a style guide is to greater uniformity in the appearance of
source code. The benefit is enhanced readability and hence maintainability for the
code. Wherever possible, we adopt stylistic conventions that have been proved to
contribute positively to readability and/or maintainability.

Before code can be considered for peer review the author must check that it adheres to
these guidelines. This may be considered a prerequisite for the review process. A
checklist is provided at the end of this document to aid in validating the source code’s
style. Where code fails to adhere to the conventions prescribed here may be considered
a defect during the review process.

If you have not already, please studyCode Completeby Steve McConnell. This book
provides a detailed discussion on all things related to building software systems. It also
includes references to statistical studies on many of the stylistic elements that affect
program maintainability. Another valuable source of solid programming practice tips is
The Practice of Programmingby Brian W. Kernighan and Rob Pike. Scott Meyers’

1

C/C++ Style Guide

books,Effective C++andMore Effective C++should be considered required reading
for any C++ programmer.

And what person would be considered complete without having readThe Elements of
Styleby Strunk and White?

2. File Contents
Use files to group functionality. Each file should contain only one cohesive set of
functions. Avoid duplicating functionality in separate files. If different files contain
similar functions, consider generalizing the function sufficiently and putting it into its
own file so that both function groups can use the one source. For C++ code, put only
one class or closely related set of classes in each file.

Avoid strong coupling between functions and classes implemented in separate files. If
two objects are so strongly coupled that one can only be used in conjunction with the
other then they belong in the same file.

Use header files (.h suffix) to declare public interfaces, use code files (.c , .cc or .cpp

suffix) to define implementations. Typically each cohesive set of functions you write in
a single file will have one accompanying header/interface file pair. Code that uses your
implementation will#include the header file.

Be precise with#include statements. Explicitly include the.h files you require, and
only where you require them. If, for example, your code calls a function defined
externally, include that function’s associated.h in your implementation file not in your
code’s associated.h file. You should only need to include other files in your.h file if
your public function interface or data type definitions require the definitions contained
therein.

Avoid using header files to contain a set of#include directives simply for
convenience. This “nesting” of#include constructs obscures file dependencies from
the reader. It also creates a coupling between modules including the top-level header
file. Unless the modules are cohesively coupled functionally, and each requiresall the
.h files included in the convenience header, it is preferable to instead include all the

2

C/C++ Style Guide

individual .h files everywhere they are required.

2.1. Header (Interface) File Content
Header files should contain the following items in the given order.

1. Copyright statement comment

2. Module abstract comment

3. Revision-string comment

4. Multiple inclusion#ifdef (a.k.a. "include guard")

5. Other preprocessor directives,#include and#define

6. C/C++#ifdef

7. Data type definitions (classes and structures)

8. typedef s

9. Function declarations

10. C/C++#endif

11. Multiple inclusion#endif

Example 1. Standard (C) header file layout

/*
* Copyright (c) 1999 Fred C. Richards.
* All rights reserved.
*
* Module for computing basic statistical measures on
* an array of real values.
*
* Id
*/

3

C/C++ Style Guide

#ifndef STATISTICS_H
#define STATISTICS_H

#include <math.h>
#include <values.h>

#define MAXCOMPLEX { MAXINT, MAXINT }

#ifdef _cplusplus
extern "C" {
#endif

struct complex {
int r; /* real part */
int i; /* imaginary part */

};
typedef struct complex Complex;

...

/*
* Compute the average of a given set.
* Input - array of real values, array length.
* Output - average, 0 for empty array.
*/

float
ave(float* v, unsigned long length);

...

#ifdef _cplusplus
}
#endif

#endif /* STATUS_H */

4

C/C++ Style Guide

2.2. Code Files
C and C++ code files follow a similar structure to the header files. These files should
contain the following information in the given order.

1. Copyright statement comment

2. Module abstract comment

3. Preprocessor directives,#include and#define

4. Revision-string variable

5. Other module-specific variable definitions

6. Local function interface prototypes

7. Class/function definitions

Unlike in the header file, the implementation-file revision string should be stored as a
program variable rather than in a comment. This wayident will be able to identify the
source version from the compiled object file. For C files use:

static const char rcs_id[] __attribute__ ((unused)) =
"Id";

The__attribute__ modifier is a GNU C feature that keeps the compiler from
complaining about the unused variable. This may be omitted for non-GNU projects.
For C++ files, use the following form for the revision string:

namespace { const char rcs_id[] = "Id"; }

Precede each function or class method implementation with a form-feed character
(Ctrl-L) so that when printed the function starts at the start of a new page.

5

C/C++ Style Guide

Example 2. Standard (C++) implementation/code file

//
// Copyright (c) 1999 Fred C. Richards.
// All rights reserved.
//
// Module for computing basic statistical measures on
// an array of real values.
//

#include "Class.h"
#include <string>

namespace {
const char rcs_id[] = "Id";

}

// Utility for prompting user for input.
string
get_user_response();

^L
Class::Class(const int len)
{

private_array_ = new[len];
}

Class::~Class()
{

delete private_array_;
}

^L
...

6

C/C++ Style Guide

3. File Format
The formatting style presented here is essentially that used by Stroustrup inThe C++
Programming Language. If you use Emacs you can make this your default editing
mode by adding the following to your.emacs file:

(defun my-c-mode-common-hook ()
(c-set-style "stroustrup"))

(add-hook ’c-mode-common-hook ’my-c-mode-common-hook)

Format your code so that the spatial structure illustrates the logical structure. Use blank
lines to help separate different ideas, use indentation to show logical relationships, and
use spaces to separate functionality. Each block of code should do exactly one thing.

Start all function definitions and declarations in column zero. Put the return value type,
the function interface signature (name and argument list), and the function body open
bracket each on a separate line. For functions that are more than a few lines long, put
the function name after the closing bracket in a comment.

Example 3. Formatting function declarations and definitions

void
debug(const string& message);

int
Class::method(const int x, const string& str)
{

.

.

.

} // method

7

C/C++ Style Guide

Use a single space to separate all operators from their operands. The exceptions to this
rule are the “-> ”, “ . ”, “ () ” and “[] ” operators. Leave no space between these
operators and their operands. When breaking operations across lines, put the operator
at the end of the broken line rather than at the start of the continuation line.

Use four spaces for each level of indentation. Avoid making lines longer than 80
characters. When breaking lines, use the natural logical breaks to determine where the
newline goes. Indent the continuation line to illustrate its logical relationship to the rest
of the code in the line. For functions, for example, this means aligning arguments with
the opening parenthesis of the argument list.

Example 4. Breaking statements across multiple lines

new_shape = affine_transform(coords, translation,
rotation);

if (((new_shape.x > left_border) &&
(new_shape.x < right_border)) &&

((new_shape.y > bottom_border) &&
(new_shape.y < top_border)))

{
draw(new_shape);

}

Use a pure-block, fully bracketed style for blocks of code. This means put brackets
around all conditional code blocks, even one-line blocks, and put the opening bracket at
the end of the line with the opening statement. The exception to this rule is for
conditions that are broken across multiple lines. In this case put the open bracket on a
line by itself aligned with the start of the opening statement (as shown above).

Example 5. Fully bracketed, pure block style

if (value < max) {
if (value != 0) {

func(value);
}

8

C/C++ Style Guide

} else {
error("The value is too big.");

}

Although the brackets may seem tedious for one-line blocks, they greatly reduce the
probability of errors being introduced when the block is expanded later in the code’s
life.

3.1. Unique to C++
Startpublic , protected , private , andfriend labels in column zero of class
declarations. Use explicitpublic labels for allstruct public fields and use explicit
private labels for all private class members.

The members of a class should be declared in the following order. Declare all public
data members and type definitions first. Declare private or protected data members or
type definitions used in function member initialization lists or inline implementations
next. Declare all public member functions next, starting with the constructors and
destructor. Declare all remaining private or protected data members and type definitions
next. Declare all private or protected function members next. Declare all friends last.

Put simple inline function definitions on the same line as their declaration. For inline
functions spanning multiple lines, use a pure-block style with four-space indentation.
In general, avoid putting complex function implementations.h files.

Example 6. Class declaration format

class Type : public Parent {
private:

int x_;
int y_;

public:
Type();
Type(int x) : x_(x) { }
~Type();

9

C/C++ Style Guide

int get_x() const { return x_; }
void set_x(const int new_x) { x_ = new_x; }
...
void display() {

...
}

}

4. Choosing Meaningful Names

4.1. Variable Names
The name formatting conventions described here are essentially the GNU coding
standards. These are available online usinginfo .

Use lower case for all variable names. For multi-word names, use an underscore as the
separator. Use all capitals for the names of constants (i.e. variables declaredconst and
enumerated types). Use an underscore as a word separator.

Choose variable names carefully. While studies show that the choice of variable names
has a strong influence on the time required to debug code, there are unfortunately no
clear and fixed rules for how to choose good names. Review Chapter 9 ofCode
Completeperiodically. In the mean time, here are some general guidelines to follow:

• Be consistent! The most important thing is to establish a clear, easily recognizable
pattern to your code so that others will be able to understand your implementation
and intent as quickly and reliably as possible.

• Use similar names for similar data types, dissimilar names for dissimilar types.

10

C/C++ Style Guide

• Avoid names that are homophones: e.g.,foo , fu , phoo , etc. Also, don’t rely on
capitalization to distinguish between variables.

• Use names that saywhat the variable representsrather than how it is used (i.e. use
nounsfor variable names); use terminology from the application domain and avoid
computer jargon that reflects programming details.

• Avoid generic names such astmp , buf , reg .

• Avoid intentionally misspelled words such aslo or lite .

In general, short names are acceptable for variables that serve a short-lived purpose or
that have a common usage in C/C++ (e.g., index variables calledi , j , k , etc.). Being
concise can contribute to the readability of code. However, for variables that serve a
unique and important purpose, or variables that persist over a significant region of your
code, use descriptive and complete names. Studies have shown that minimal debugging
time correlates with average variable name lengths of 10-16 characters.

4.2. Function Names
Use lower-case letters for public function names. Use an underscore as a word
separator.

For functions that return no values (i.e. return typevoid), use strong verbs that indicate
the function’s purpose. Typically you will want to include the object of the verb in the
name. For example,

void
remove_dc_offset(short *signal, const unsigned long length);

void
set_output_gain(const float gain);

Because functions tend to serve a more complex purpose than variables, longer names
are more acceptable.

11

C/C++ Style Guide

If a function returns a value it is sometimes better to use a name that indicates the
meaning of the value returned. For instance,

/*
* Compute the DC offset of the given signal.
*/

float
dc_offset(const short * const signal,

const unsigned long length);

/*
* Poll the D/A and return the current gain setting.
*/

float
gain(void);

In general, be consistent and be informative. Choose names that make your code easy
to read and understand.

4.3. Classes, Structures and Type Definitions
The name formatting conventions described here are essentially those used by
Stroustrup in his book on C++.

Capitalize the first letter of the name of each data type that you define. This includes all
struct , class , typedef andenum types. Use an underscore as a word separator, just
as for C variables and function names.

For classinstancevariables, start all names with lower-case letters. Again, use an
underscore as a word separator. Apply the same rules topublic andprotected

members, both variables and functions. Add a trailing underscore toprivate member
names.

12

C/C++ Style Guide

Example 7. Capitalization of user-defined types

/* Straight C */

struct complex {
int r; /* real */
int i; /* imaginary */

};
typedef struct complex Complex;

// C++ interface example

class Canvas {
public:

enum Pen_style {
NONE = 0,
PENCIL,
BRUSH,
BUCKET

};

Canvas();
~Canvas();

void set_pen_style(Pen_style p);
...

private:
int cached_x_; // to avoid recomputing coordinates
int cached_y_;

};

// C++ usage example

Canvas sketch_pad;

sketch_pad.set_pen_style(Canvas::BRUSH);

13

C/C++ Style Guide

When working with C++ classes and objects be mindful of redundant name elements.
Remember that class members are identified by their class instance name. Thus you do
not have to repeat information about the class in the member element’s names.

Example 8. Poor variable names

// Notice how redundant "stack" becomes.

template <Type>
class Stack {
public:

int stack_size;
add_item_to_stack(Type item);
...

};

Stack my_stack;

my_stack.add_item_to_stack(4);
int tmp = my_stack.stack_size;

5. Comments
In general, well written code should document itself. Clear, concise variable and
function names, consistent formatting and spatial structure, and clean syntactical
structure all contribute to readable code. Occasionally, however, complex logic will
benefit from explicit description. Be careful not to use comments to compensate for
poorly written code. If you find that your code requires many comments or is often
difficult to describe, perhaps you should be rewriting the code to make it simpler and
clearer.

14

C/C++ Style Guide

5.1. Style
For straight C code, use/* ... */ style comments. For C++ code, use// ...

style comments. Adhering to these conventions, you can quickly estimate the number
of lines of comments in your code with the following commands:

% grep "^[\t]** "
% grep "^[\t]*\/\/"

Too few or too many comments is an indicator of code that is likely to be difficult to
maintain.

Avoid the use of end-line comments except for variable declarations and for marking
#if/#endif statements. Make comments be the only thing on a line. For longer
comments describing more complex logic, use ablockstyle to offset them from the
code better. Use block-style comments to describe functions. Usebold comments to
delimit major sections of your code file. Preface all bold comments and block
comments that introduce functions with a form-feed character so that they appear at the
start of the printed page. The following example shows the various comment types in
the C style.

Example 9. C comment types

^L
/*

* **
* Bold comment.
* **
*/

/*
* Block comment.
*/

/* Short (single-line) comment. */

15

C/C++ Style Guide

int i; /* end-line comment */

5.2. Content
End-line comments are acceptable for describing variable declarations. Use a comment
to describe any variable whose purpose is not obvious from its name.

Use comments to document your intent. Do not describehowyour code works, that
should be obvious from the implementation. Instead describewhyyour code does what
it does. Avoid explaining especially tricky code in comments. Instead, rewrite the code
to make it intrinsically more obvious. Use complete sentences with proper spelling and
punctuation in all comments.

Write your comments before and as you write your code, not after. If you start by
writing comments you give yourself a low-level design for the implementation. When
you are finished testing your code, go back and review all comments to make sure they
are still accurate.

Comment things that have wide impact. If a function makes assumptions about the
condition of variable on input, document that. If a required speed optimization makes
the code difficult to read, explain the need for the code in a comment. If your code uses
or changes any global variables, comment that.

Usebold comments to delimit major sections in your code file. You may, for instance,
implement a number of private utility functions. Use a bold comment to mark the start
of that code. Preface each function with ablockcomment describing the function’s
purpose, the meaning of any input variables, and the significance of any return value(s).
There is no need to include the function name since it immediately follows the
comment.

Example 10. Commenting functions and function groups

^L

16

C/C++ Style Guide

/*
* **
* Statistics utilities used to
* optimize performance on the fly.
* **
*/

/*
* Compute the standard deviation or "variance"
* for a set.
*
* Input: v - set of values and set size.
* len - size of input set.
* Output: Dev = Expect (x - x_ave)^2
* 0 for the empty set
*/

static float
std_dev(const float *v, const unsigned long len)
{

...
}

Use an end-line comment to mark the end of particularly long blocks of code. This
applies to functions and conditional code. Include the control condition that terminates
control for if/else branches andfor/while/do loops.

Use an end-line comment also to identify which#if or #ifdef statement a particular
#endif statement closes. Include the condition in the comment for blocks of code
spanning more than a few lines. When using#else conditions, mark both the#else

and the#endif statements with the negated condition (i.e. preface it with “not”).

Example 11. Commenting long code blocks

#ifdef DEBUG
.
.

17

C/C++ Style Guide

.
#else // not DEBUG
void
function()
{

if (position != END)

.

.

.

} // position != END

.

.

.

} // function()

#endif // not DEBUG

6. Syntax and Language Issues
The following sections outline some general practices of good defensive programming.
Always assume that others will have to read and maintain your code, and try to assist
them as you write. Also, assume that errors and defects are inevitable, and write so as
to isolate them and limit their effect as quickly as possible. This latter practices is
sometimes referred to as "fire-walling" code. Be liberal in checking the validity of input
arguments within functions, and always check values returned by functions you call.

18

C/C++ Style Guide

6.1. General
Avoid putting multiple instructions on the same line. Each line should do exactly one
thing. This is applies in particular to control statements for branch and loop structures.
Consider the following:

/* Bad practice! */

if (!eof && ((count = get_more()) > min_required) {
...

}

This should be rewritten so that the act of getting more data is separate from the task of
checking that more data remains to be processed:

/* Safer version */

if (!eof) {
count = get_more();
if (count > min_required) {

...
}

}

Avoid the use of side-effects. The following innocuous line may actually produce
different depending on which compiler is used:

a[i] = i++; /* a[0] or a[1] == 1 ? */

Again, each line should contain a single statement, and each statement should do
exactly one thing.

19

C/C++ Style Guide

Avoid type casts and never cast pointers tovoid* . One of the strengths of C++ is its
strong typing and ability to support arbitrary user types. If you feel the need to cast data
to other types in C++, perhaps you should be considering defining an inheritance
relationship or using templates.

Do not define any types from pointers (e.g.,typedef char* String).

Avoid using preprocessor constants (i.e.#define s). Instead declare variables of the
appropriate C/C++ type asconst and use them. For related sets of integer constants,
define anenum. Both of these techniques let the compiler perform type checking where
the preprocessor#define s would not.

Limit variable scope as much as possible. In C++, use brackets to group functionality
and temporary variables. Declare a variable just prior to using it and destroy it when
you are finished with it.

Use parentheses to group logic in branch and loop control structures. Most people are
not intimately familiar with operator precedence, and parentheses can make logic
operations much easier for people to parse and understand. Without the additional
parentheses it is not obvious that the first case below differs from the other three (which
are equivalent) for only one of the eight combinations of the booleansx , y andz :

Example 12. One of these things is not like the other

(x || y && y || z)

(x && y || z)
((x && y) || z)
((x || z) && (y || z))

6.2. Structured Programming
Keep the structure of your code as clear as possible. Do not callexit() from library
functions. Insteadreturn with an appropriate error condition. Callreturn only once

20

C/C++ Style Guide

for each function longer than a few lines. Avoid usingbreak andcontinue to escape
loop and branch code. Consider instead adding or changing the exit conditions of the
the control statement. Do not usegoto .

Prefer usingif/else/else/... over theswitch/case/case/... with non-trivial
branch conditions. For both constructs use default conditions only to detect legitimate
defaults, or to generate an error condition when there is no default behavior. Using a
switch/case block with overlapping conditions only when the cases have identical
code so that fall-through is obvious.

Prefer usingwhile() { ... } instead ofdo { ... } while(); . It is easier for
humans to parse the control structure if they know the exit condition upon entering the
block of code. Thedo { ... } while(); form buries the exit criterion at the end
of the loop.

Avoid overly long control structures. If you find loop or branch constructs spanning
several printed pages or screens, consider rewriting the structure or creating a new
function. At the very least place a comment at the end of the structure to indicate the
exit conditions.

Avoid deeply nested code. Humans have a hard time keeping track of more than three
or four things at a time. Try to avoid code structure that requires more than three or
four levels of indentation as a general rule. Again, consider creating a new function if
you have too many embedded levels of logic in your code.

Avoid the use of global variables. They make your code hard to support in a
multi-threaded environment. If you do use global variables, understand how they affect
the ability of your module to be reentrant.

6.3. Functions and Error Checking
Do not use preprocessor function macros. There are too many possible problems
associated with them and modern computer speeds and compiler optimizations obviate
any benefit they once may have had. Define a function instead.

Write function declarations/prototypes for all functions and put them either in the

21

C/C++ Style Guide

module.h file for public functions or at the start of the.c file for private, internal
functions. The function declaration list should read like a table of contents for your
code.

Make explicit all assumptions about the condition of input data to your routines. Use
assertions to test for programming errors, use exceptions (C++) or return values (C) to
report error conditions detected in normal use. Do not put any implementation logic in
your assertions since often they will not remain in the deployed code (especially library
functions). When a library function must report both a computed value and a distinct
error value, pass the computed value through a variable andreturn the error value.

Check the return values of all library function calls. This is especially important for
functions providing access to system resources (e.g.,malloc() , fopen() , etc.).

Generate informative error messages. Write messages that are understandable to the
user. Be complete and concise and avoid using computer jargon. Suggest possible
causes of the error condition.

7. Conclusion
The guidelines presented here should be followed when writing all new code. When
working with someone else’s code it is more important that you adhere to the
conventions used there. Only if the coding style is ad hoc should you impose your own
(or these) conventions.

A checklist is included at the end of this document. It covers most of the items
discussed. Apply the checklist to your code prior to submitting it for peer review. Any
unaddressed issue is considered a coding defect during the review process.

Obviously a style guide cannot dictate good programming practices. It can only ward
off some of the more flagrant problems. With luck, a good style guide can encourage
better programming habits. To that end, all C++ programmers should readEffective
C++ , by Scott Meyers. It covers far more concerns and goes into far greater detail on
C++ than is appropriate here. It is critical for C++ programmers to understand these

22

C/C++ Style Guide

issues when writing new code.

Appendix A. Review Checklist
File contents.

• Do all files contain:

• a copyright statement?

• an abstract/synopsis comment?

• a revision string?

• Do all header files contain a multiple include#ifdef ?

• Are all necessary#include s made explicitly (i.e. the code does not rely on nested
#include s)?

• Are all public functionsdeclaredin the module’s.h file?

• Do function declarations/prototypes exist for all functions?

• Does each code file contain exactly one cohesive set of classes or functions?

• Are functions from different files sufficiently uncoupled from one another?

File format.

• Do all function declarations and definitions begin in column zero? Are the return
type, function name and open bracket each on a separate line, each beginning in
column zero?

• Do functions longer than a typical screen/page have comments with their name at the
close bracket?

23

C/C++ Style Guide

• Is four-space indentation used throughout?

• Are all control structures in a pure-block style and fully bracketed?

• Is there a single space surrounding all operators, except. , -> , [] and() ?

• Do the C++ keywordspublic , private , protected , andfriend all start in
column zero?

• Are C++ class internals declared in the proper order?

1. public data and types

2. private or protected data and types used in the class declaration

3. public member functions, starting with constructors and the destructor

4. other private or protected data members

5. other private or protected functions

6. friends

Variable and function names.

• Are all C variable and function names lower case, with an underscore as a word
separator?

• Are all C++ variable and function names lower case, with capitalization rather than
an underscore indicating word boundaries?

• Do all private class member names end with an underscore?

• Do all programmer-defined types/classes start with a capital letter?

• Are all constants and enumerated types all capital letters?

• Are all variable names sufficiently informative and meaningful given their scope?

• Do variable names match the problem domain?

• Are variable names nouns?

24

C/C++ Style Guide

• Are function names strong verbs (or nouns for functions whose sole purpose is to
compute a value)?

Comments.

• Are bold comments used to divide code into major sections? Are block comments
used to mark significant points? Are end-line comments used only for variable
declarations and to mark long blocks of code?

• Does C++ code use// ... style comments (not/* ... */)?

• Do all comments contain complete sentences, with proper punctuation and spelling?

• Do comments describe intent rather than implementation details?

• Is all subtle code sufficiently explained in comments?

• Do all but the simplest functions have comments describing what they do, what data
they operate on and any impact they have on the rest of the application?

Language usage.

• General

• Does each line of code do exactly one thing?

• Are all constants declared asconst and not as#define s?

• Does the code avoid casting variables and return values to different data types?
Are there no casts tovoid* ?

• Are no typedef s made from pointers (e.g.,typedef char* Str ?)

• Are there no preprocessor macros defined?

• Are parentheses used to group items in all but the simplest logic constructs?

• Are all private class members explicitly declared such?

• Program structure

25

C/C++ Style Guide

• Does each function callreturn from only one place?

• Is exit() called only from withinmain() , and only once?

• Do final else blocks ofif/else branches anddefault blocks of
switch/case branches handle default conditions or error conditions only?

• Do all overlappingswitch/case conditions (i.e. fall-throughs) use identical
code?

• Has the use of global variables been avoided?

• Do most control structures span no more than a page or two? Is the close bracket
of all longer controls structures commented with the exit criteria for the block of
code?

• Does nested conditional code go no more than three or four levels?

• Has the use of structure-breaking directives such asgoto , continue andbreak

been avoided?

• Functions and error-checking

• Are functions used always instead of preprocessor macros?

• Are all assumptions about the condition of input data tested explicitly with
assert() ?

• Will the code perform the same way if assertions are removed?

• Do library functions return error values or throw exceptions (C++) wherever
possible?

• Are all function return values tested or exceptions caught?

• Are all error messages informative to a typical user? Are messages complete
sentences, with proper punctuation and spelling?

26

C/C++ Style Guide

References

The C++ Programming Language, Bjarne Stroustrup, 0-201-88954-4,
Addison-Wesley, 1997.

Code Complete: A Practical Handbook of Software Construction, Code Complete,
Steve McConnell, 1-55615-484-4, Microsoft Press, 1993.

Effective C++: 50 Specific Ways to Improve Your Programs and Designs, Effective
C++, Scott Meyers, 0-201-92488-9, Addison-Wesley, 1998.

The Elements of Style, William Strunk, Jr. and E. B. White, 0-02-418200-1, MacMillan
Publishing Co., Inc., 1979.

More Effective C++: 35 New Ways to Improve Your Programs and Designs, More
Effective C++, Scott Meyers, 0-201-63371-X, 1996, Addison-Wesley, 1998.

The Practice of Programming, Brian W. Kernighan and Rob Pike, 0-201-61586-X,
Addison-Wesley, 1999.

27

