
2/11/2014 Object-Oriented Languages in the Industry: A Comparison

http://archive.eiffel.com/doc/manuals/technology/oo_comparison/page.html 1/5

Object-Oriented Languages: A Comparison

The following tables compare four major O-O languages: Eiffel, C++, C#, Java and Smalltalk.

Although this comparison is part of the Eiffel pages, its intent is to provide a balanced coverage and to
generate light, not heat. The two components are clearly separated:

News, in the form of factual comparisons for each property. (If you find any error, please report
it so that we can correct it.)
Our comments, marked by a green bullet.

If you find the table useful, please put a link to it in your own pages.

The references to Eiffel without further qualification apply to the language. Comments about the
environment apply to ISE Eiffel, the leading implementation.

We hope that you find this comparison useful and that it helps you make your choice based on facts,
not passion.

Design by Contract™, assertions

Eiffel C++ Java Smalltalk

Design by Contract:
language and environment
support assertions

Nothing comparable
(only an "assert"
instruction)

Nothing comparable (only an "assert"
instruction). Various non-standard
assertion proposals.

Nothing
comparable

 Our comment: The idea of Design by Contract is a key tool for producing reliable software,
for documentation, and for debugging. Only Eiffel implements it through assertions
(preconditions, postconditions, invariants) in the language itself, associated documentation
tools, and automatic mechanisms for testing the assertions.

Static typing

Eiffel C++ Java Smalltalk

Statically
typed

Statically typed; however the language
supports C-style "casts" which really amount
to invitations to violate type rules

Typed, mostly statically but
dynamic typing is required for
generic container structures.

Dynamically
typed

 Our comment: Static typing enhance readability and enables compilers to catch errors long
before they can become a run-time problem; this saves development time, saves money, and
yields producing more reliable code.

Proprietary status, vendor interoperability

Eiffel C++ Java Smalltalk

Open, multi-vendor,
standardized

Open, multi-vendor
(ANSI standard)

Multi-vendor,
licensed from Sun

Multi-vendor, fairly wide variation
between vendors

 Our comment: Although C++ has the prestige of an ANSI standard, practical interoperability
is far from perfect, especially since the standard has been evolving so quickly, and
implementations such as Visual C++ depart from the standard in a number of areas. Smalltalk
experts also report that it is hard to move from an implementation to another. For Java, Sun has
refused to relinquish the trademark and has insisted on remaining in control of the language,
infuriating many other companies.

Eiffel has been stable for several years and there is a Kernel Library standard (ELKS 95),
controlled, as the language, by the NICE consortium, the standards body for Eiffel.

mailto:webmaster@eiffel.com
http://eiffel.com/eiffel/page.html

2/11/2014 Object-Oriented Languages in the Industry: A Comparison

http://archive.eiffel.com/doc/manuals/technology/oo_comparison/page.html 2/5

Compilation technology

ISE Eiffel C++ Java Smalltalk

Combination of interpretation
and compilation in same
environment

Usually
compiled

Usually mix of
interpretation and "on-
the-fly" compilation

Historically interpreter-based,
currently mix of interpretation and
compilation

 Our comment: Compilation is needed for run-time efficiency; interpretation yields
compilation efficiency. We think it is hard to match ISE Eiffel's combination of a quick compilation
mechanism -- the Melting Ice Technology (TM) -- for development and debugging, and
extensively optimized "final compilation" for generation of efficient production code.

Efficiency of generated code

Eiffel C++ Java Smalltalk

Generates fast
executables.

Generates fast
executables.

Widely reported
performance problems.

Executables require a
"Smalltalk image".

 Our comment: Eiffel, and ISE Eiffel in particular, are focused on performance. Benchmarks
(particularly in array optimization) show them to be comparable in speed to hand-
coded/optimized C code, with far less development effort and improved maintenance. C++ run-
time performance is typically quite good. Performance, to put it diplomatically, is not Smalltalk's
main claim to fame. Java users report performance problems similar to those of Smalltalk. ISE
Eiffel has it both ways: bytecode generation for fast development; optimized compilation through
C for fast execution.

Automatic documentation

ISE Eiffel C++ Java Smalltalk

Documentation extracted automatically ("short", "flat-
short" and other formats) without extra programmer
effort.

No standard
mechanism.

JavaDoc: add
special
comments.

No standard
mechanism.

 Our comment: Eiffel introduced the idea that documentation should not be a separate
product but a set of views extracted from the software itself by automatic tools. ISE Eiffel has a
powerful set of mechanisms to generate many views, textual or graphical, from Eiffel source
code: class interfaces, inheritance hierarchies, high-level "bubbles and arrows" diagrams etc. No
extra work is required of the programer; Eiffel's syntactic clarity and built-in Design by Contract
mechanisms play a key role here.

You can generate the result in many formats -- in fact, any format that you like, by defining a
"filter" for that format using EFF, ISE's Eiffel Filter Format. Existing filters include HTML,
Postscript, Microsoft Rich Text Format (Help files format), TeX, Troff, MML (for FrameMaker),
ASCII. They can serve as models for in-house style rules or new formats.

The HTML format is particularly important as a way to publish a system architecture on an
Intranet or Internet page and allow team collaboration on an ongoing design.

The risk is just too big, if you treat documentation as a product developed and maintained
separately, that it will be incomplete or incorrect, especially as the software evolves (how do
you guarantee that the documentation gets updated accordingly?). The designers of Java have
acknowledged that the JavaDoc idea was imitated from Eiffel. JavaDoc goes in the right direction
but requires you to add special comments, and does not have the benefit of the Design by
Contract mechanisms. Other languages do not give you any standard facilities to produce
documentation automatically as a derivative from the code. This is a major obstacle to obtaining
some of the benefits of O-O development.

Run-time fees

2/11/2014 Object-Oriented Languages in the Industry: A Comparison

http://archive.eiffel.com/doc/manuals/technology/oo_comparison/page.html 3/5

ISE
Eiffel

C++ Java Smalltalk

No run-
time
fees.

No run-
time
fees.

No run-time fees for introductory versions,
but 6-figure fees for embedded use.

No run-time fees (reversing
previous policies of major vendor).

 Our comment: We think that run-time fees are harmful to the development of the software
industry. There have been a number of press reports about the huge fees that Sun is exacting
for the use of Java in embedded environments, and the industry's strong negative reactions. ISE
Eiffel, in contrast, can be used without run-time fees; this is in the customers' best interest.

Exception handling

Eiffel C++ Java Smalltalk

Exception handling Exception handling Exception handling Exception handling

 Our comment: It seems everyone agrees here! Note that the Eiffel model, based on Design
by Contract principles, goes further than the others by permitting a "rescue/retry" stragegy for
error recovery.

Multiple inheritance

Eiffel C++ Java Smalltalk

Multiple
inheritance,
widely used

Multiple inheritance (but use discouraged by many
books and compiler vendors because of various
problems).

Single inheritance (but
multiple interface
facility)

Single
inheritance

 Our comment: Robust multiple inheritance facilities are essential to support combining
various abstractions and reusable components, both in modeling (CALCULATOR_WATCH inherits
from CALCULATOR and WATCH) and design/implementation (INTEGER inherits
from NUMERIC andCOMPARABLE). It seems just about everyone recognizes Eiffel's leadership
here, with a careful design supporting renaming, "join", repeated inheritance etc.

Don't believe those who tell you multiple inheritance is tricky; that's true only in languages that
don't support it, or don't support it well.

Readability, clarity, ease of use

Eiffel C++ Java Smalltalk

Clear, simple,
readable syntax.

Complex
syntax

C++-like
syntax.

Opinions differ. We feel it's pretty bizarre (right-
association for operators, etc.)

 Our comment: Readability is essential to the development and maintenance of large systems
with a long lifetime and many participants. Eiffel has been widely praised for the simplicity of the
language and the clarity of the syntax, making it possible to teach the language quickly including
to non-software-professionals (financial analysts, bankers, engineers...)

Standardization of library style

Eiffel C++ Java Smalltalk

Libraries use
standardized vocabulary

Wide variation - Libraries evolved before vocabulary
was a recognized issue.

? Emphasis on
consistency

 Our comment: The Eiffel emphasis on a strict set of standards for naming library
components has proved a major boost to productivity and ease of learning. Even in Smalltalk a
learning curve of six months is widely reported before people truly master the libraries.

2/11/2014 Object-Oriented Languages in the Industry: A Comparison

http://archive.eiffel.com/doc/manuals/technology/oo_comparison/page.html 4/5

Automatic memory management

Eiffel C++ Java Smalltalk

Garbage Collection/ Automatic
memory management

No garbage collection in common
commercial implementations.

Garbage
collection

Garbage
collection

 Our comment: C++ is pretty much alone here, and the idea that programmers should be
responsible for the tedious and error-prone task of reclaiming unused memory has fewer and
fewer supporters.

ISE Eiffel appears to be unique in its combination of garbage collection and multithreading: in a
multi-threaded context, each thread has its own garbage collector. This means that when a
thread needs memory the others can proceed without disturbance. In other approaches that we
have seen, when one thread needs garbage collection, all threads stop. This is unacceptable for
embedded and all time-sensitive applications.

Scope in the software lifecycle

ISE Eiffel C++ Java Smalltalk

Seamless Visual Development
Environment

Addresses
implementation only

Focus on
implementation

Mostly focused on
implementation

 Our comment: Among existing approaches, Eiffel is the only one that is not just an
implementation language but covers the whole spectrum, from analysis and design to
implementation and maintenance. Seamlessness and reversibility are the key terms. The
benefits, technical and economic, are invaluable. "Design by Contract", used throughout the
process, provides the unifying thread. You stay from beginning to end within the same concepts
and tools, going as far forward or backward as you need without encountering the kind of
"impedance mismatches" of people faced with, say, UML at one end and Java or Smalltalk at the
other.

Mathematical software

ISE Eiffel C++ Java Smalltalk

Libraries available Libraries available Libraries available or under development Libraries available

 Our comment: Developers of high-end financial and scientific applications need to have
comprehensive and high-performance mathematical/numerical libraries at their disposal. The
EiffelMath libraries (based on the prestigious NAG libraries) provide high performance and well-
abstracted concepts, making it easy for developers and non-technical users such as financial
analysts to design and build complex applications easily.

Openness and interoperability with legacy software

Eiffel C++ Java Smalltalk

Standard language and environment support
for Integration with C and C++

Good
interoperability
with C.

Native
methods

No standardized C-
language interface.

 Our comment: Clearly it is essential to interoperate with existing legacy (or legacy++) code.
Eiffel was conceived from the start as acomponent combinator: a tool for combining software
elements written in various languages, taking full advantage of the architectural capabilities of
consistent object technology (classes, information hiding, Design by Contract, multiple
inheritance, genericity).

2/11/2014 Object-Oriented Languages in the Industry: A Comparison

http://archive.eiffel.com/doc/manuals/technology/oo_comparison/page.html 5/5

The language has a provision for including software elements written in other languages
(external clause), which can then be repackaged through Eiffel into a coherent O-O structure;
ISE Eiffel also supports calling Eiffel mechanisms from the outside, through the Cecil library. The
environment interoperates with many other industry-standard tools, such as OLE/COM and
CORBA, and offers migration tools such as the Legacy++class wrapper for C++.

.

How object-oriented?

Eiffel C++ Java Smalltalk

Purely
OO

Hybrid Some proponents say it's pure-O-O; to us it looks pretty much like a C
extension.

Purely
OO

 Our comment: Purity is not a dogma, but an O-O language must treat the O-O paradigm
seriously and without reservations if companies using it are to gain the economic benefits that
they expect from object technology. Here we differ strongly from the C++/Java school; we think
it is important to ensure compatibility with C (and C++) software, but that one should not
pollute the language with constructs from another era.

Age and track record

ISE Eiffel C++ Java Smalltalk

Since 1985. Many
reference sites,
successful projects in
the 800,000-line range.

Approximately 12 years old,
many projects (but hard to
know how many are truly
O-O).

Since 1995, initially geared
towards programming small
appliances and Internet applets,
then scaled up.

Approximately
20 years old.

 Our comment: Eiffel is a proven solution with many mission-critical projects to its credit.
And you know that they are truly O-O, because there is nothing else in Eiffel.

Special thanks to Keith Gunn of SHL Systemhouse for providing the framework and first implementation
of this comparison. The comparison is based on commonly available product literature from a broad
selection of object technology vendors available at the time of release. We welcome constructive
feedback and suggestions for improvement.

© 1985-2012 E iffel Software. A ll rights reserved. -- P rivacy P olicy

http://archive.eiffel.com/doc/manuals/library/cecil/page.html
http://archive.eiffel.com/doc/manuals/language/cpp/page.html
http://archive.eiffel.com/general/privacy_policy.html

