A Familiar yet Vague Term:
“Abstract Data Type”

ADT = data + operation

C++ Object Oriented Programming
Pei-yih Ting

N

OU CS

Abstract Data Type™**™*

< Abstract?! %D:E{\’I’B}?Emﬁ\'?lﬁé J E'wglgﬁ%m
+ Disassociated from any specific instance Jfl154f~, = ¥
* Expressing a quality apart from an object 154 [~ (Eﬁl%f)
* Having only intrinsic form with little attempt at pictorial
representation or narrative content f#fo! jgl%!,‘

+ Data type?
characteristics of a set of data,
template for instances of data storage
specifies: - format

< ranges

- memory resources

Abstract Data Type (cont’d)

< See what people on Internet said
[P?F'ADT(Abstract data type)
25— P ADTﬂr’)
THI54 EH“W'JF:(ADT)
= HIEERL IFEIF e PR B R,

[ELRLENDHEZFRE,
R

AT AL (array)5
[ERLf el 7 int arra

Any better?!

Abstract Data Type (cont’d)

< http://en.wikipedia.org/wiki/Abstract_data type

< In computing, an abstract data type (ADT) Is a
specification of a set of data and the set of
operations that can be performed on the data.

< €.g. container, deque, list, map, multimap, multiset,
priority queue, queue, set, stack, string, tree, heap

< Such a data type Is abstract in the sense that It Is
Independent of various concrete implementations.

x Question: Are they still abstract without specifying the
set of operations (only the set of data)??

Abstract Data Type (cont’d)
< Are you really satisfying with this definition???
x “Data type” Is an easy Idea: the attributes

* It looks like that “data type” itself could also be
Independent of various implementations.

*x\Why are the additional “operations” related
to the keyword “abstract”???

Minimal Spanning Tree (1/4)

< JohnsonBaugh’s Algorithms, Section 7.3 (page 284) find
Minimal Spanning Tree (MST) with Prim’s algorithm:

Six cities We want to construct a set of
o Interconnecting roads such

4 cger that one can reach any city

from any starting city and

the total construction costs

1 Foxville

4 Springfield are minimized.

The estimated costs for some
pairs of cities are as labeled.

5 Mystic A tree

Result:

Best

Prim’s MST (2/4)

<~ Prim’s algorithm: starting with vertex 5 (Mystic)

1 Foxville 2 Steger 1

—6 —°6
2+3+2+1=8 2+3+4+2+1=12

Prim’s MST (3/4)

h: a list of vertices v not in the MST and its minimum weight to MST
(weight of the edge from v to the vertex parent[v])

parent[v]: (v, parent[v]) Is the edge with minimum weight

h

minimum weight
from v to MST || Parent[v]

4 1
2 1
6 6

MST={1,5,6}

Prim’s MST (4/4)

prim(adj, start, parent) { while (ref 1= nully § W73 We MST
— adi last _ ref.weight=2

o W= Tet.ver h.keyval(w)=3
fori=1ton if (h.isin(w) && KEY .

keyl[i] = o ref.weight < h.keyval(w)) {
key([start] = 0 parent[w] = v
parent[start] = 0 h.decrease(w, ref.weight)

vie:

h.init(key, n) }
fori=1ton{ ref = ref.next
v=hdel) V-1)
ref = adj[v] ref={5,43,2} 1

.)

hisan abstract data type that supports the following operations
h.init(key, n): initializes h to the values in key
h.del(): deletes the item in h with the smallest weight and returns the vertex
h.isin(w): returns true if vertex w is in h
h.keyval(w): returns the weight corresponding to vertex w
h.decrease(w, new_weight): changes the weight of w to new_weight (smaller)

Abstract Painting

< P1casso Miro - Angel

=> F K Eiﬂ 2% FH E El Fol J}*”,l_

Abstract

< Mathematic formula: Central Limit Theorem,
Stirling formula, Fourier Transform, ...

< Physic formula: Newton’s law, wave equation, ...

It is quite likely that you cannot understand the
meaning of these formula because they are
abstracted out from their original application
environments.

* A met
* A met

* A met

o

N0C
jle]e

Abstraction

< Abstraction: the process or result of generalization
by reducing the information content of a concept or
an observa

to fine
to fino

jle]e

nle phenomenon

general form of an idea
a unified explanation

to sim

»_n./
_‘F'J ;RLII

plify the complex exteriors.

_E',ETI’“*

xex. fLp TR, JF%%%&F[J MR, TR TR = E Y
but F*EL, ARE
E,l}*”p LA BT | ?Fu% §=F2/IE A

- I[ﬁ{ E*?Hﬂ\

J_TIL#LK‘%P UHL R - ,d%:ﬁl IFT[.I,[E{E 7H;h [

‘ﬁEJ%?L PRpNED B }*F”[/Rl

Data vs. Operation

pure data

) o] [e

< Data storage can be used
for any imaginable
purpose.

< You want your data
storage to be specific.
You specify Its
“operations”
* How do you use this data?
* For what do you use it?

Back to ADT
+ abstract data type (ADT): ﬁ“l%@ﬁ@zfﬁwﬁs?
IS a specification of R gl[[EE
{ a set of data and @fj;ﬁ;j F' JHURER Y

the set of operations performed on the data.

< It 1s Independent of various implementations

< It provides specific descriptions of the
functionalities of a piece of data In terms of
operations abstracted from many similar objects.

The C syntax: x.y vs. X.z()

< In C, how do you capture the idea of
h.key and h.decrease(w, weight)
< Are these two syntactically correct in C?
%+ Yes.
< decrease Is called a “function pointer”

< It 1s a piece of data (attribute), and at the same time,
you can invoke a function via this data.

* e.g. void fun(int x) void (*fp)(int);
1

fp = fun;
} (*fp)(5); /* calling fun(5) */

15

01 // cl testfp.c

02 #include <stdio.h>

03 27 int isEqual(int data,

04 struct MyStruct struct MyStruct *self)
05 { 28 {

06 intdata; 29 printf("" calling isEqual() ");
07 int (*fp)(int, struct MyStruct *); 30 if (data == self->data)
08 }; 31 return 1;

09 32 else

10 int isEqual(int, struct MyStruct *); 33 return O;

11 34}

12 void main()

13 {

14 struct MyStruct obj = {123, isEqual};

15 intdata;

16 int (*myfp)(int, struct MyStruct *) = isEqual;

17

18 printf(*'Please input an integer: ');

19 scanf("'%d", &data);

20 printf(""%d\n"", obj.fp(data, &obj));

21 printf(""%d\n", (*obj.fp)(data, &obj));

22 printf(*"%d\n", myfp(data, &obj));

23 printf(""%d\n", (*myfp)(data, &obj));

24 printf(""%d\n", IsEqual(data, &obj));

25}

26

