
1

Advanced Inheritance

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS

2

Contents
 Abstract Base Class (ABC)
 What can you do with an ABC?
 Pure virtual function
 Multiple inheritance
 Virtual Base Class
 Example
 Private inheritance
 Restoring the accessibility of privately inherited interface
 Inherit from a template class

3

Abstract Class
 In the University database program, Person class exists only to serve

as a common base class
 We can strengthen the abstraction by allowing only derived objects

of Person to be created (instantiated). Ex.
class Person {
public:

Person();
Person(char *name, int age);
virtual ~Person();
virtual void display() const = 0;

private:
char *m_name;
int *m_age;

};
 Person is now an example of an abstract class. Any attempt to

define a Person object will fail, i.e.
Person teacher; // compilation error

At least one member function
should be declared in such way
for Person to be an abstract class

error C2259: 'Person' : cannot instantiate abstract class due to following members:
warning C4259: 'void __thiscall Person::display(void) const' :pure virtual function

was not defined

4

What can you do with an Abstract Class?
 You can define a pointer to the abstract class object as long as you

do not try to allocate an actual object (i.e. instantiation), e.g.
Person *ptrTeacher; // polymorphic pointer

 Each of the derived class that need to be instantiated must
implement its version of the display() virtual function. Otherwise,
the derived class is still an abstract class and can not be instantiated.

 If Undergraduate, Graduate, and Faculty all implement the display(),
function, then you can do this

Person *database[3]; // heterogeneous container
database[0] = new Undergraduate("Mary", 18);
database[1] = new Graduate("Angela", 25, 6000, "Fairview 2250");
database[2] = new Faculty("Sue", 34, "Fairview 2248", "Professor");
for (int i=0; i<3; i++)

database[i]->display();

 Abstract classes are sometimes called partial classes

5

Pure Virtual Function
 The function that makes the class abstract is called a pure virtual

function (also called a deferred function)
 The base class can define a version for this pure virtual function to

be automatically shared by all derived classes. Since each derived
class has to define its own implementation for this pure virtual
function, the function defined will be overridden in all derived
classes. However, this function can be called explicitly as follows:

void Person::display() const {
cout << getName() << " is " << getAge() << " years old.\n";

}
void Faculty::display() const {

Person::display();
cout << " Her address is " << m_office.getAddress() << ".\n";
cout << " Her rank is " << m_rank << ".\n\n";

}

6

Abstract Base Class (ABC)
 ABCs are base classes that contain some pure virtual functions

without being implemented
 Ex. In the class hierarchy below, classes A and B are all abstract

because function Z is not implemented till classes C and D

class B
other functions

class C
Z() implemented

class A
deferred function Z()=0

class D
Z() implemented

7

Why do you need Abstract Classes?
 There could be many roles a particular type of object is playing

depending on which environment the object is in. For example,
 A person is an employee in his office, a father in his family, a pitcher in a

baseball game, etc
 A pipe could be an output unit for one program and an input unit for another.
 A printer could be an output device for a program and a resource to be handled

by the operating system

 With abstract classes, you can describe multiple interfaces when
viewing/using the object in different environments.

 An interface specifies a particular role (we specify a role with a set of
operations) for an object that provides some particular functions to
other objects. An ABC is frequently an adjective, Ex. Printable,
Persistent, … only specify some properties.

 A class can have many unrelated abstract specifications. We will
discuss this language feature in C++ as multiple inheritance.

8

Why do you need Abstract Classes?
 Two examples (types) of usage:

Student

Undergraduate Graduate ForeignStudent

Runnable Printable Observable

WorkThread

need not be instantiated

only describe some
partial property

9

Multiple Inheritance
 Sometimes an object has IS-A relationships to more than one class.

In such cases, multiple inheritance may be appropriate.
 Consider the following two base classes

class Predator
{
public:

Predator(char *prey, char *habitat);
~Predator();
const char *getPrey() const;
const char *getHabitat() const;

private:
char *m_prey;
char *m_habitat;

};

class Pet
{
public:

Pet(char *name, char *habitat);
~Pet();
const char *getName() const;
const char *getHabitat() const;

private:
char *m_name;
char *m_habitat;

};

10

Multiple Inheritance (cont’d)
 Now we want to define a Cat class

class Cat: public Predator, public Pet
{
public:

Cat(char *name, char *prey, char *habitat);
void reduceLives();
int getLives() const;

private:
int m_lives;

};

 Class inheritance hierarchy
 The Cat constructor

Cat::Cat(char *name, char *prey, char *habitat)
: Predator(prey, habitat), Pet(name, habitat), m_lives(9)

{
}

 Note that getHabitat() and the m_habitat will be inherited twice

Predator Pet

Cat

11

Using the Multiple Inherited classes
 Using the Cat class

Cat cat("Binky", "mice", "indoors");
cat.reduceLives(); // due to an accident
cout << cat.getName() << " is a cat who eats " << cat.getPrey() << " and lives "

<< cat.Pet::getHabitat() << ".\n" << cat.getName() << " currently has "
<< cat.getLives() << " lives.\n";

 What would happen if we wrote this?
cout << cat.getHabitat();

 It is necessary to disambiguate which getHabitat() function we want.
In this case, either Predator::getHabitat() or Pet::getHabitat() is a
possible candidate.

Output
Binky is a cat who eats mice and lives indoors.
Binky currently has 8 lives

error C2385: 'Cat::getHabitat' is ambiguous

12

Improving Multiple Inheritance
 The redundancy in the base classes is a clue that perhaps we haven’t

decomposed the inheritance properly
 Here is one solution:

 The base class declaration
class Animal {
public:

Animal(char *habitat);
virtual ~Animal();
const char *getHabitat() const;

private:
char *m_habitat;

};

Cat

Animal
getHabitat()

Predator
getPrey()

Pet
getName()

13

Virtual Base Class
 Cat inherits getHabitat() through

Predator but also through Pet

 Cat still has two getHabitat()’s
cout << cat.getHabitat();

 Still need to disambiguate these two versions
cout << cat.Perdator::getHabitat() << "\n";
cout << cat.Pet::getHabitat() << "\n";

 A better solution is to create a virtual base class.
A virtual base class is included only once in all derived classes.
In the case of Cat, all paths from Animal to Cat must be marked as
virtual, but only once.

Cat

Animal

Predator Pet

error C2385: 'Cat::getHabitat' is ambiguous

14

Syntax of Virtual Base Class
 Animal is declared as before, but Predator and Pet must be marked

virtual
class Predator: public virtual Animal {

…
};
class Pet: public virtual Animal {

…
};

 Cat remains almost the same
 One critical difference: a virtual base class must be initialized by its

most derived class (Cat in this case)
Cat::Cat(char *name, char *prey, char *habitat)

: Animal(habitat), Predator(prey, habitat), Pet(name, habitat), m_lives(9) {
}
Predator::Predator(char *prey, char *habitat) : Animal(habitat) {

m_prey = new char[strlen(prey)+1];
m_habitat = new char[strlen(habitat)+1];

}
 Any initialization from intermediate class is ignored.

If not supplied, call to
default ctor will be added

used only in
Predator predator("a", "b");

15

Mix-in Inheritance
 Multiple inheritance is sometimes used to combine disparate classes

into a single abstraction. This is called mix-in inheritance.

 Many class libraries combine classes
so that all derived classes have access
to key functionality. Ex.

The IS-A relationship is true only partially.

 The mix-in concept is easily abused, ex.

Base class

Persistent Printable

Person

Graduate FacultyUndergraduate

Office

A graduate student is not an office definitely.

16

Private Inheritance
 Private inheritance

class Student {
public:

Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;

private:
char *m_name;
int *m_age;

};

 All public members of Student are private to Graduate.
 Classes derived from Graduate would be unable to access any

elements or services from Student.
 Private inheritance is equivalent to a HAS-A relationship.

Outside client code cannot see any trace of the base class from a
derived class object.

class Graduate: private Student {
public:

Graduate(char *name, int age, int stipend);
int display() const;

private:
int m_stipend;

};

17

Restoring the Accessibility
 In private inheritance, individual functions can be restored to the

original access (and only to that level).

class Student {
public:

Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;

private:
char *m_name;
int *m_age;

};

 Usage
Graduate graduateStudent("Angela", 25, 6000);
cout << graduateStudent.getName();

class Graduate: private Student {
public:

Graduate(char *name, int age, int stipend);
int display() const;
Student::getName;

private:
int m_stipend;

};

18

Inherit from a Template Class
 Assume you have a templated array class

template <class type>
class Array {
public:

Array(int arraySize);
~Array();
void insertElement(int slot, type element);
type getElement(int slot) const;
int getSize() const;

private:
int m_arraySize;
type *m_array;

};

 You want the class to also return the largest element in the array
template <class type>
class NewArray: public Array<type> {
public:

NewArray(int arraySize);
type getLargest();

};
This derived NewArray class is still a template class.

19

Inherit from a Template Class
 Constructor

template<class type>
NewArray<type>::NewArray(int arraySize): Array<type>(arraySize) {

for (int i=0; i<arraySize; i++) insertElement(i, 0);
}

 The new function
template<class type>
type NewArray<type>::getLargest() {

type largest = getElement(0);
for (int i=1; i<getSize(); i++)

if (getElement(i) > largest)
largest = getElement(i);

return largest;
}

 Usage
void main() {

NewArray<double> array(20);
array.insertElement(0, 4.6);
array.insertElement(5, 12.6);
cout << array.getLargest();

}

Output
12.6

