More Classes

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS

Contents

< Object composition and constructors
< Initialization of object within object
< Returning pointers

< this pointer

< Exploiting implicit references

<+ Class conversion

<+ Static data members

< Static member functions

Object Component

< Sometimes you would like to use a well designed
object as a component to help accomplishing the task

Object Component

< Sometimes you would like to use a well designed
object as a component to help accomplishing the task @

< In that case, we have an object within another object

Object Component

< Sometimes you would like to use a well designed
object as a component to help accomplishing the task @
< In that case, we have an object within another object

< Example:

Object Component

< Sometimes you would like to use a well designed

object as a component to help accomplishing the task @
< In that case, we have an object within another object
+ Example: class Person {
public:

Person(const char *name);
~Person();

char *getName() const;
private:
char *m_name;

};

Object Component

< Sometimes you would like to use a well designed
object as a component to help accomplishing the task @
< In that case, we have an object within another object
< Example: | class Person { class SaleDept {
public: public:

Person(const char *name); SaleDept(const char *manager,
~Person(); const char *clerk);

char *getName() const; void listMembers() const;
private: private:

char *m_name; Person m_manager;
}; Person m_clerk;

};

Object Component

< Sometimes you would like to use a well designed
object as a component to help accomplishing the task @
< In that case, we have an object within another object
< Example: | class Person { class SaleDept {
public: public:

Person(const char *name); SaleDept(const char *manager,
~Person(); const char *clerk);

char *getName() const; void listMembers() const;
private: private:
char *m_name; Person m_manager;
}; Person m_clerk;
void main() { jo
SaleDept *saleDept = new SaleDept(*'Jamie", "Paul");

saleDept->listMembers();
delete saleDept;

}

Object Component

< Sometimes you would like to use a well designed
object as a component to help accomplishing the task @
< In that case, we have an object within another object
< Example: | class Person { class SaleDept {
public: public:
Person(const char *name); SaleDept(const char *manager,
~Person(); const char *clerk);
char *getName() const; void listMembers() const;
private: private:

char *m_name; Person m_manager;
}: Person m_clerk;
void main() { ¥

SaleDept *saleDept = new SaleDept(*'Jamie", "Paul");

saleDept->listMembers();
delete saleDept;

¥ SaleDept::SaleDept(const char *managerName, const char *clerkName) {

¥

Object Component

< Sometimes you would like to use a well designed
object as a component to help accomplishing the task @
< In that case, we have an object within another object
< Example: | class Person { class SaleDept {
public: public:

Person(const char *name); SaleDept(const char *manager,
~Person(); const char *clerk);

char *getName() const; void listMembers() const;
private: private:
char *m_name; Person m_manager,
1 Person m_clerk;
void main() { g
SaleDept *saleDept = new SaleDept(*'Jamie", "Paul");
saleDept->listMembers(); error C2512: 'Person’ : no appropriate default
delete saleDept; constructor available

¥ SaleDept::SaleDept(const char *managerName, const char *clerkName) {

¥

Solving The Initialization Problem

< First try: illegal syntax, calling Person ctor within SaleDept ctor

Solving The Initialization Problem

< First try: illegal syntax, calling Person ctor within SaleDept ctor

SaleDept::SaleDept(const char *managerName, const char *clerkName) {
m_manager(managerName);
m_clerk(clerkName);

}

Solving The Initialization Problem

< First try: illegal syntax, calling Person ctor within SaleDept ctor

SaleDept::SaleDept(const char *managerName, const char *clerkName) {
m_manager(managerName);
m_clerk(clerkName);

}

< Second try: still missing default ctor, require default ctor, invoke
assignment operator, depending on some uncertain factors (shallow

copy)

Solving The Initialization Problem

< First try: illegal syntax, calling Person ctor within SaleDept ctor

SaleDept::SaleDept(const char *managerName, const char *clerkName) {
m_manager(managerName);
m_clerk(clerkName);

}

< Second try: still missing default ctor, require default ctor, invoke
assignment operator, depending on some uncertain factors (shallow

copy)

SaleDept::SaleDept(const char *managerName, const char *clerkName) {
m_manager = Person(managerName);
m_clerk = Person(clerkName);

}

error C2512: 'Person’ : no appropriate default
constructor available

The Initialization Problem (cont’d)

< Third try: a safe and syntactically legal solution, but undesirable

The Initialization Problem (cont’d)

< Third try: a safe and syntactically legal solution, but undesirable

class Person {
public:

Person() {} // empty default ctor
void setName(const char *name);

};

The Initialization Problem (cont’d)

< Third try: a safe and syntactically legal solution, but undesirable

class Person {
public:

Person() {} // empty default ctor
void setName(const char *name);

};

& Correct solution: using INitialization list

The Initialization Problem (cont’d)

< Third try: a safe and syntactically legal solution, but undesirable

class Person {
public:

Person() {} // empty default ctor
void setName(const char *name);

};

& Correct solution: using INitialization list

SaleDept::SaleDept(const char *managerName, const char *clerkName)
: m_manager(managerName), m_clerk(clerkName) {

}

Returning Pointers

class Person {

public:
Person(const char *name);
~Person();

private:
char *m_name;

¥

Returning Pointers

class Person {
public:
Person(const char *name);
~Person();
char *getName() const;
private:
char *m_name;

¢
<+ The function getName() violates data encapsulation

Returning Pointers
< Why? Consider the code:

class Person {
public:
Person(const char *name);
~Person();
char *getName() const;
private:
char *m_name;

¥

<+ The function getName() violates data encapsulation

Returning Pointers

< Why? Consider the code:
class Person {

public: void SaleDept::listMembers() const {
Person(const char *name); cout << m_manager.getName()
~Person(); << " s the manager of the "
char *getName() const; "sale department and "
private: << m_clerk.getName()
char *m_name; << " is the clerk.\n";

3 ¥

<+ The function getName() violates data encapsulation

Returning Pointers

< Why? Consider the code:
class Person {

public: void SaleDept::listMembers() const {
Person(const char *name); cout << m_manager.getName()
~Person(); << " s the manager of the "
char *getName() const; "sale department and "
private: << m_clerk.getName()
char *m_name; << " is the clerk.\n";

3 ¥ looks

<+ The function getName() violates data encapsulation

Returning Pointers

< Why? Consider the code:
class Person {

public: void SaleDept::listMembers() const {
Person(const char *name); cout << m_manager.getName()
~Person(); << " s the manager of the "
char *getName() const; "sale department and "
private: << m_clerk.getName()
char *m_name; << " is the clerk.\n";

3 ¥ looks

<+ The function getName() violates data encapsulation

<~ What would happen if it were written like this

Returning Pointers

< Why? Consider the code:
class Person {

public: void SaleDept::listMembers() const {
Person(const char *name); cout << m_manager.getName()
~Person(); << " s the manager of the "
char *getName() const; "sale department and "
private: << m_clerk.getName()
char *m_name; << " is the clerk.\n";

3 ¥ looks

<+ The function getName() violates data encapsulation

<~ What would happen if it were written like this

void SaleDept::listMembers() const {
*m_manager.getName() = '#';
cout << m_manager.getName() << " is the manager of the sale department and "
<< m_clerk.getName() << " is the clerk.\n";

Returning Pointers

< Why? Consider the code:
class Person {

public: void SaleDept::listMembers() const {
Person(const char *name); cout << m_manager.getName()
~Person(); << " s the manager of the "
char *getName() const; "sale department and "
private: << m_clerk.getName()
char *m_name; << " is the clerk.\n";

3 ¥ looks

<+ The function getName() violates data encapsulation

<~ What would happen if it were written like this

void SaleDept::listMembers() const { Interfering the integrity of
*m_manager.getName() = "#": f the private data of Person class
cout << m_manager.getName() << " is the manager of the sale department and "
<< m_clerk.getName() << " is the clerk.\n";

Solving Encapsulation Problem

< Simple solution provided by the grammar to prevent incidental

)

breaking of the encapsulation e
unintentional

Solving Encapsulation Problem

< Simple solution provided by the grammar to prevent incidental

)

breaking of the encapsulation

class Person {

public:
Person(const char *name);
~Person();

unintentional

private:
char *m_name;

¥

Solving Encapsulation Problem

< Simple solution provided by the grammar to prevent incidental

)

breaking of the encapsulation

class Person {
public:
Person(const char *name);
~Person();
const char *getName() const;
private: const char *Person::getName() const {
char *m_name; return m_name,

o }

unintentional

Solving Encapsulation Problem

< Simple solution provided by the grammar to prevent incidental

)

breaking of the encapsulation

class Person {

public:
Person(const char *name);
~Person();
const char *getName() const;

unintentional

private: const char *Person::getName() const {
char *m_name; return m_name,

o }

void SaleDept::listMembers() const {
const char *tempString = m_manager.getName();

cout << m_manager.getName() << " Is the manager of the sale department and "
<< m_clerk.getName() << " Is the clerk.\n";

Solving Encapsulation Problem

< Simple solution provided by the grammar to prevent incidental

)

breaking of the encapsulation

class Person {
public:
Person(const char *name);
~Person();
const char *getName() const;
private: const char *Person::getName() const {
char *m_name; return m_name,

o }

void SaleDept::listMembers() const {
const char *tempString = m_manager.getName();
I/ tempString[0] = "#"; // compiler rejects this statement
cout << m_manager.getName() << " Is the manager of the sale department and "
<< m_clerk.getName() << " is the clerk.\n";

unintentional

Solving Encapsulation Problem

< Simple solution provided by the grammar to prevent incidental

)

breaking of the encapsulation

class Person {
public:
Person(const char *name);
~Person();
const char *getName() const;
private:
char *m_name;

¥

unintentional

Won't be able to mutate

the content of m_name
within this member functiob

74
const char *Person::getName() const {

}

return m_name;

void SaleDept::listMembers() const {

const char *tempString = m_manager.getName();

I/ tempString[0] = "#"; // compiler rejects this statement

cout << m_manager.getName() << " Is the manager of the sale department and "
<< m_clerk.getName() << " Is the clerk.\n";

Solving Encapsulation Problem

< Simple solution provided by the grammar to prevent incidental

)

breaking of the encapsulation
class Person {

IOUE“C: S _ Won't be able to mutate
erson(const char *name); the content of m_name

~Person(); within this member functiob
const char *getName() const;

unintentional

. 74
private: const char *Person::getName() const {
char *m_name; return m_name;

o }

void SaleDept::listMembers() const {
const char *tempString = m_manager.getName();
I/ tempString[0] = "#"; // compiler rejects this statement
cout << m_manager.getName() << " Is the manager of the sale department and "
<< m_clerk.getName() << " is the clerk.\n";

¥
< Other solutions? use a string object as component

this pointer

< In the first C++ translator, by Stroustrup

this pointer

< In the first C++ translator, by Stroustrup, C++ functions is
translated to pure C functions. How can a function access some
variables (those member variables) not defined in that function?

this pointer

< In the first C++ translator, by Stroustrup, C++ functions is
translated to pure C functions. How can a function access some
variables (those member variables) not defined in that function?

class Grades {
public:

Grades(int score);

Int getScore();
private:

Int m_score;

¥

this pointer

< In the first C++ translator, by Stroustrup, C++ functions is
translated to pure C functions. How can a function access some
variables (those member variables) not defined in that function?

class Grades { void main() {

public: Grades student1(95), student2(85), student3(45);
Grades(int score); cout << studentl.getScore();
Int getScore(); cout << student2.getScore();

private: cout << student3.getScore();
int m_score; }
b

this pointer

< In the first C++ translator, by Stroustrup, C++ functions is
translated to pure C functions. How can a function access some
variables (those member variables) not defined in that function?

class Grades { void main() {

public: Grades student1(95), student2(85), student3(45);
Grades(int score); cout << studentl.getScore();
Int getScore(); cout << student2.getScore();

private: cout << student3.getScore();
Int m_score; }

}
Int Grades::getScore() {

}

this pointer

< In the first C++ translator, by Stroustrup, C++ functions is
translated to pure C functions. How can a function access some
variables (those member variables) not defined in that function?

class Grades { void main() {

public: Grades student1(95), student2(85), student3(45);
Grades(int score); cout << studentl.getScore();
Int getScore(); cout << student2.getScore();

private: cout << student3.getScore();
Int m_score; }

¥

Int Grades::getScore() {
return m_score;

} ™.

——————

Which variable
Is this referring
to?

this pointer

< In the first C++ translator, by Stroustrup, C++ functions is
translated to pure C functions. How can a function access some
variables (those member variables) not defined in that function?

class Grades { void main() {

public: Grades student1(95), student2(85), student3(45);
Grades(int score); cout << studentl.getScore();
Int getScore(); cout << student2.getScore();

private: cout << student3.getScore();
Int m_score; }

¥

Int Grades::getScore() {
[ELLINN M_SCOFE, Which variable

} _/ is this referring

to?
< The compiler generates an implicit pointer this to the object, calls the
function, and passes it into the function as an argument. e

this pointer

< In the first C++ translator, by Stroustrup, C++ functions is
translated to pure C functions. How can a function access some
variables (those member variables) not defined in that function?

class Grades { void main() {

public: Grades student1(95), student2(85), student3(45);
Grades(int score); cout << studentl.getScore();
Int getScore(); cout << student2.getScore();

private: cout << student3.getScore();
Int m_score; }

¥

Int Grades::getScore() {
[ELLINN M_SCOFE, Which variable

} _/ is this referring

to?
< The compiler generates an implicit pointer this to the object, calls the
function, and passes it into the function as an argument. e

< Explicitly access the object

this pointer

< In the first C++ translator, by Stroustrup, C++ functions is
translated to pure C functions. How can a function access some
variables (those member variables) not defined in that function?

class Grades { void main() {

public: Grades student1(95), student2(85), student3(45);
Grades(int score); cout << studentl.getScore();
Int getScore(); cout << student2.getScore();

private: cout << student3.getScore();
Int m_score; }

¥

Int Grades::getScore() { _ -
return m_score; Int Grades::getScore() {

Which variable T TS Sra
Y \, is this referring } —
to?

< Explicitly access the object

< The compiler generates an implicit pointer this to the object, calls the
function, and passes it into the function as an argument. e

Primary purpose of this pointer

< The this pointer is most commonly used when objects need to be
linked to other objects in a doubly linked list

Primary purpose of this pointer

< The this pointer is most commonly used when objects need to be
linked to other objects in a doubly linked list

class Node {
public:

void insert(Node *newNode);
private:

Node *previous;

Node *next;

b

Primary purpose of this pointer

< The this pointer is most commonly used when objects need to be
linked to other objects in a doubly linked list

class Node {
public:

void insert(Node *newNode);
private:

Node *previous;

Node *next;

b

<

currentNode <«

~ nextNode

previous

previous

next

)

next -

Primary purpose of this pointer

< The this pointer is most commonly used when objects need to be
linked to other objects in a doubly linked list
class Node { <« currentNode<« > nextNode
public: previous previous ‘
void insert(Node *newNode); next next -
private:

Node *previous;
Node *next;

};
<~ We want to Insert a new node
Into the list after currentNode

Primary purpose of this pointer

< The this pointer is most commonly used when objects need to be
linked to other objects in a doubly linked list
class Node { <« currentNode<« > nextNode
public: previous previous ‘
void insert(Node *newNode); next next -
private:

Node *previous;
Node *next;

};
<~ We want to insert a new node
Into the list after currentNode
with currentNode—>insert(newNode);

Primary purpose of this pointer

< The this pointer is most commonly used when objects need to be
linked to other objects in a doubly linked list

class Node {
public:

void insert(Node *newNode);
private:

Node *previous;

Node *next;

};
<~ We want to Insert a new node
Into the list after currentNode

< currentNode <«

previ

currentNode <
previous

—~ nextNode
ous previous ‘
next -

next

> nextNode
previous

next

L newNodeJ

with currentNode—>insert(newNode);

next

previous
next

Primary purpose of this pointer

< The this pointer is most commonly used when objects need to be
linked to other objects in a doubly linked list
class Node { <« currentNode<« > nextNode
public: previous previous ‘
void insert(Node *newNode); next next -

private:
Node *previous; currentNode < >nextNode

Node *next; previous previous

}; next L J next
+ We want to insert a new node newNode

into the list after currentNode preVio“SL

next

with currentNode—>insert(newNode);
< The only way to achieve the goal Is using this pointer

Primary purpose of this pointer

< The this pointer is most commonly used when objects need to be
linked to other objects in a doubly linked list

class Node { <« currentNode<« > nextNode
public: previous previous ‘
void insert(Node *newNode); next next —

private: this
Node *previous; currentNode > nextNode

Node *next; previous previous

}; next next

+ We want to insert a new node newNode

Into the list after currentNode prg\éi(otus
with currentNode—>insert(newNode);

< The only way to achieve the goal Is using this pointer
void Node::insert(Node *newNode) {

Primary purpose of this pointer

< The this pointer is most commonly used when objects need to be
linked to other objects in a doubly linked list

class Node { <« currentNode<« > nextNode
public: previous previous ‘
void insert(Node *newNode); next next —

private: this
Node *previous; currentNode 3 nextNode

Node *next; previous previous

}; next next

&+ We want to insert a new node EVi et
into the list after currentNode preV'ousL

. . next
with currentNode—>insert(newNode); (1
< The only way to achieve the goal Is using this pointer
void Node::insert(Node *newNode) {
© newNode—>next = next;

Primary purpose of this pointer

< The this pointer is most commonly used when objects need to be
linked to other objects in a doubly linked list

class Node {
public:

void insert(Node *newNode);
private:

Node *previous;

Node *next;

};
<~ We want to Insert a new node
Into the list after currentNode

< currentNode <«

previous
next

this

—~ nextNode
previous ‘
next —

currentNode &
previous

2 nextNode
previous

next

with currentNode—>insert(newNode);

< The only way to achieve the goal Is using this pointer
void Node::insert(Node *newNode) {

© newNode—>next = next;
® newNode—>previous = this;

newNode

next

Primary purpose of this pointer

< The this pointer is most commonly used when objects need to be
linked to other objects in a doubly linked list

class Node {
public:

void insert(Node *newNode);
private:

Node *previous;

Node *next;

};
<~ We want to Insert a new node
Into the list after currentNode

<« currentNode< ~ nextNode
previous previous ‘

next

this

currentNode <
previous

next -

2 nextNode
previous

next

2/

with currentNode—>insert(newNode);

< The only way to achieve the goal Is using this pointer
void Node::insert(Node *newNode) {

© newNode—>next = next;
® newNode—>previous = this;

© if (next) next—>previous = newNode;

J@ next
newNode

previous
next

Primary purpose of this pointer

< The this pointer is most commonly used when objects need to be
linked to other objects in a doubly linked list

class Node {
public:

void insert(Node *newNode);
private:

Node *previous;

Node *next;

};
<~ We want to Insert a new node
Into the list after currentNode

< currentNode<« —~ nextNode
previous previous ‘
_ next next —
this

currentNode < > nhextNode
previous previous

next (3] next
4 L newNodeJ

previous
@ | next J—

with currentNode—>insert(newNode); (1

< The only way to achieve the goal Is using this pointer
void Node::insert(Node *newNode) {

© newNode—>next = next;
® newNode—>previous = this;

© if (next) next—>previous = newNode;

O next = newNode:

Primary purpose of this pointer

< The this pointer is most commonly used when objects need to be
linked to other objects in a doubly linked list

class Node { <« currentNode<« > nextNode
public: previous previous ‘
void insert(Node *newNode); next next —

private: this
Node *previous; currentNode < >nextNode

Node *next; previous previous
}; next o L J@ next
+ We want to insert a new node EVi et
into the list after currentNode Al ‘

: : next
with currentNode—>insert(newNode); (1
< The only way to achieve the goal Is using this pointer
void Node::insert(Node *newNode) {
© newNode—>next = next;
® newNode—>previous = this; <~

© if (next) next—>previous = newNode; X :
O next = newNode; next->previous

Primary purpose of this pointer

< The this pointer is most commonly used when objects need to be
linked to other objects in a doubly linked list

class Node { <« currentNode<« > nextNode
public: previous previous ‘
void insert(Node *newNode); next next —

private: this
Node *previous; currentNode < >nextNode

Node *next; previous previous

}; next J@ next
o L newNode

&~ We want to insert a new node

into the list after currentNode Ei prﬁ‘éi(ot“SL

with currentNode—>insert(newNode); (1

< The only way to achieve the goal Is using this pointer
void Node::insert(Node *newNode) {
© newNode—>next = next; -/ next could be NULL
® newNode—>previous = this; <~ ><‘\\

© if (next) next—>previous = newNode; N :
O next = newNode; next->previous

Exploiting Implicit References

<~ Suppose we want to add a function to class Grades that checks if
two objects contain the same score

Exploiting Implicit References

<~ Suppose we want to add a function to class Grades that checks if
two objects contain the same score

< Here Is the call in main()
if (gradel.equal(grade2))

cout << "'same scores'";
else
cout << "'different scores"";

Exploiting Implicit References

<~ Suppose we want to add a function to class Grades that checks if
two objects contain the same score

< Here Is the call in main()

if (gradel.equal(grade2))

cout << "'same scores'";
else

cout << "'different scores"";

< Here 1s the function

bool Grades::equal(Grades &secondScore) {
return m_score == secondScore.m_score;

}

Exploiting Implicit References

<~ Suppose we want to add a function to class Grades that checks if
two objects contain the same score

< Here Is the call in main()

if (gradel.equal(grade2))
cout << "'same scores'’;
else
cout << "'different scores'";

< Here 1s the function

bool Grades::equal(Grades &secondScore) {
return m_score == secondScore.m_score;

}
< Do not ignore implicit dereferencing

bool Grades::equal(Grades &firstScore, Grades &secondScore) {
return firstScore.m_score == secondScore.m_score;

}

Note how clumsy the call is to this function
If (gradel.equal(gradel, grade2))

Type Conversion Constructor

< Suppose we would like to convert raw minutes to Time object

Type Conversion Constructor

< Suppose we would like to convert raw minutes to Time object
class Time {

private:
int m_hours;
Int m_minutes;
int m_seconds;
void normalize();

};

Type Conversion Constructor

< Suppose we would like to convert raw minutes to Time object

class Time {
public:
Time();

private:
int m_hours;
int m_minutes;
int m_seconds;

void normalize();

};

Time::Time(): m_seconds(0), m_minutes(0), m_hours(0) {

}

Type Conversion Constructor

< Suppose we would like to convert raw minutes to Time object

class Time {
public:
Time();
Time(int hours, int minutes, int seconds);

private:
int m_hours;
int m_minutes;
int m_seconds;
void normalize();
};
Time::Time(): m_seconds(0), m_minutes(0), m_hours(0) {

}

Time::Time(int hours, int minutes, int seconds)
: m_hours(hours), m_minutes(minutes), m_seconds(seconds) {
normalize();

}

Type Conversion Constructor

< Suppose we would like to convert raw minutes to Time object

class Time {

public:
Time();
Time(int hours, int minutes, int seconds);
Time(int rawMinutes);

private: A
intm_hours; "~ _
INt m_minutes; ~ ~single-argument
int m_seconds; constructor
void normalize();

};

Time::Time(): m_seconds(0), m_minutes(0), m_hours(0) {

}

Time::Time(int hours, int minutes, int seconds)

: m_hours(hours), m_minutes(minutes), m_seconds(seconds) {
normalize();

}

Time::Time(int rawMinutes): m_seconds(0), m_minutes(rawMinutes), m_hours(0) {

normalize();
} 18-10

Type Conversion Constructor

< Suppose we would like to convert raw minutes to Time object

glﬁgflglme{ ™. void Time::normalize() {

Time(): | m_minutes += m_seconds / 60;

Time(int hours, int minutes, int seconds); ," m_seconds = m_seconds % 60;

Time(int rawMinutes); TSRS = NS BI5
private: A , m_minutes = m_minutes % 60;

i 0 = 0) -
intm_hours; “~ _ m_hours = m_hours % 24;

INt m_minutes; ~ ~single-argument %,

int m_seconds; constructor
void normalize();

};
Time::Time(): m_seconds(0), m_minutes(0), m_hours(0) {
}

Time::Time(int hours, int minutes, int seconds)

: m_hours(hours), m_minutes(minutes), m_seconds(seconds) {
normalize();

}

Time::Time(int rawMinutes): m_seconds(0), m_minutes(rawMinutes), m_hours(0) {
normalize();

} 18-10

Type Conversion Ctor (cont’d)

< Usage:

Type Conversion Ctor (cont’d)

< Usage:

void main() {
Int X = 125;
Time object;

Type Conversion Ctor (cont’d)

< Usage:
void main() {
Int X = 125;
Time object;
object = Time(125); // temporary object, assignment operator

Type Conversion Ctor (cont’d)

< Usage:

void main() {
Int X = 125;
Time object;
object = Time(125); // temporary object, assignment operator
object = (Time) Xx;

Type Conversion Ctor (cont’d)

< Usage:
void main() {
Int X = 125;
Time object;
object = Time(125); // temporary object, assignment operator
o= (i) Explicit invocation of type
conversion ctor

Type Conversion Ctor (cont’d)

< Usage:
void main() {
Int X = 125;
Time object;
object = Time(125); // temporary object, assignment operator
ObJ_ECt = (Time) x; Explicit invocation of type
object = 125; conversion ctor

Type Conversion Ctor (cont’d)

< Usage:

void main() {
Int X = 125;
Time object;
object = Time(125); // temporary object, assignment operator

obj_ect i (Tlme) o Explicit invocation of type
obj_ect = 125; conversion ctor
object = x;

Type Conversion Ctor (cont’d)

< Usage:

void main() {
Int X = 125;
Time object;
object = Time(125); // temporary object, assignment operator

object = (Time) X; Explicit invocation of type

Ob!ECt = 125 conversion ctor
object = x;

Implicit invocation of type conversion ctor,
construct a temporary object,
execute default assignment operator

Type Conversion Ctor (cont’d)

< Usage:

void main() {
Int X = 125;
Time object;
object = Time(125); // temporary object, assignment operator

object = (Time) X; Explicit invocation of type

Ob!ECt = 125 conversion ctor
object = x;

Implicit invocation of type conversion ctor,

construct a temporary object,

execute default assignment operator

<~ How do we prevent the compiler from using a single-argument
constructor in the above implicit conversion?

Type Conversion Ctor (cont’d)

< Usage:
void main() {
Int X = 125;
Time object;
object = Time(125); // temporary object, assignment operator

object = (Time) X; Explicit invocation of type

Ob!ECt = 125 conversion ctor
object = x;

Implicit invocation of type conversion ctor,
construct a temporary object,
execute default assignment operator

<~ How do we prevent the compiler from using a single-argument

constructor in the above implicit conversion?
class Time {
explicit Time(int rawMinutes);

&

Class Conversion

class Fahrenheit {
public:
Fahrenheit(int temperature);

Int getTemperature() const;
private:
Int m_temperature;

};

Class Conversion

class Fahrenheit {
public:
Fahrenheit(int temperature);

Int getTemperature() const;
private:
Int m_temperature;
b
class Celsius {
public:
Celsius(int temperature);

Int getTemperature() const;
private:
Int m_temperature;

¥

Class Conversion

class Celsius; // forward declaration

class Fahrenheit {

public:
Fahrenheit(int temperature);
Fahrenheit(Celsius &cTemperature);

Int getTemperature() const;
private:

Int m_temperature;
b
class Celsius {
public:
Celsius(int temperature);

Int getTemperature() const;
private:
Int m_temperature;

¥

Class Conversion

class Celsius: // forward declaration

class Fahrenheit {

public:
Fahrenheit(int temperature);
Fahrenheit(Celsius &cTemperature);
Int getTemperature() const;

private:
Int m_temperature;

b

class Celsius {

public:
Celsius(int temperature);
Celsius(Fahrenheit &fTemperature);
Int getTemperature() const;

private:
Int m_temperature;

};

Class Conversion

class Celsius: // forward declaration

class Fahrenheit {

public:
Fahrenheit(int temperature);
Fahrenheit(Celsius &cTemperature);
int getTemperature() const; ____...cc------=""""

private: “Fahrenheit: :Fahrenheit(Celsius &cTemperature) {

Int celsiusTemperature = cTemperature.getTemperature();

b _ ‘\ m_temperature = (int)(9.0 * celsiusTemperature / 5 + 32.5);
class Celsius {

public:
Celsius(int temperature);
Celsius(Fahrenheit &fTemperatu re)
Int getTemperature() const;

private:
Int m_temperature;

};

Intm temperature

Class Conversion

class Celsius: // forward declaration

class Fahrenheit {

public:
Fahrenheit(int temperature);
Fahrenheit(Celsius &cTemperature);
int getTemperature() const; ____...cc------=""""

private:

Fahrenhert :Fahrenheit(Celsius &cTemperature) {
int m temperature

Int celsiusTemperature = cTemperature.getTemperature();

b _ ‘\ m_temperature = (int)(9.0 * celsiusTemperature / 5 + 32.5);
class Celsius {

public: -~

Celsius(int temperature); -~ Fahrenheit room(75);
Celsius(Fahrenheit &fTemperatu re) Celsius zimmer(18);
int getTemperature() const; / Celsius C_room(room);

private: /' Fahrenheit f_zimmer(zimmer);
Int m_temperature; room = zimmer;

b

Static Data Members

< Suppose we want to give each object of the Student class a unique ID

Static Data Members

< Suppose we want to give each object of the Student class a unique ID
< Using a global variable is one method

Static Data Members

< Suppose we want to give each object of the Student class a unique ID

// Student.h
class Student {
public:

Int getID() const;
private:

Int m_id;
¢

Static Data Members

< Suppose we want to give each object of the Student class a unique ID
< Using a global variable is one method

// Student.h I/ Student.cpp

class Student { Int gIDNumber = 0;
public:

Int getID() const;
private:

Int m_id;
I

Static Data Members

< Suppose we want to give each object of the Student class a unique ID
< Using a global variable is one method

// Student.h I/ Student.cpp

class Student { Int gIDNumber = 0;
public:

Student(); Student::Student():m_id(@IDNumber++) {

Int getID() const; }
private:

Int m_id;
¢

Static Data Members

< Suppose we want to give each object of the Student class a unique ID
< Using a global variable is one method

// Student.h I/ Student.cpp

class Student { Int gIDNumber = 0;
public:

Student(); Student::Student():m_id(@IDNumber++) {

Int getID() const; }
private:

Int m_id;
¢

< Problems:
* |f other programs manipulate this global variable, the count would be incorrect

Static Data Members

< Suppose we want to give each object of the Student class a unique ID
< Using a global variable is one method

// Student.h I/ Student.cpp

class Student { Int gIDNumber = 0;
public:

Student(); Student::Student():m_id(@IDNumber++) {

Int getID() const; }
private:

Int m_id;
¢

< Problems:
* |f other programs manipulate this global variable, the count would be incorrect

* It would be better if a name like gStudentIDNumber is used

Static Data Members (cont’d)

< A better solution with static data member

Static Data Members (cont’d)

< A better solution with static data member

Student.h

class Student {
public:

Int getlD() const;
private:

static int lastIDNumber;

Int m_id;

};

Static Data Members (cont’d)

< A better solution with static data member

Student.h

class Student {
public:

Int getlD() const;

private:
static int lasti DNumber;
Int m_id;

¥

< A class declaration is only a type
definition instead of a variable, you
must define the static variable in
the global scope

Student.cpp

Int Student::lastiDNumber = O:

Static Data Members (cont’d)

< A better solution with static data member

Student.h

class Student {
public:

Student();

Int getlD() const;
private:

static int lastiDNumber:
Int m_id;

¥

< A class declaration is only a type
definition instead of a variable, you
must define the static variable in
the global scope

Student.cpp

Int Student::lastiDNumber = O:

Student::Student():m_id(lastiDNumber++) {
}

Static Data Members (cont’d)

< A better solution with static data member

< A class declaration is only a type
Student.h definition instead of a variable, you
class Student { must define the static variable in

public: the global scope
Student();

Int getlD() const;

Student.cpp

private: int Student::lastiDNumber = 0;
static int lastiDNumber;

int m_id; Student::Student():m_id(lastiDNumber++) {
& }

< Also used for class specific
constant definition

Static Data Members (cont’d)

< A better solution with static data member

< A class declaration is only a type
definition instead of a variable, you
class Student { must define the static variable in

public: the global scope
Student();

Int getlD() const;

Student.h

Student.cpp

private: int Student::lastiDNumber = 0;
static int lastiDNumber;

int m_id; Student::Student():m_id(lastiDNumber++) {
& }

+ Also used for class specific| 1% Integer {

constant definition

const static INT_MAX = 2147483647,

Static Member Functions

class Student {
public:

Int getlD() const;
private:

Int m_id;

Static Member Functions

< Static member functions

class Student {
public:

Int getlD() const;
private:

Int m_id;

static int getNewlID();

static int incrementNewlID();
j

Static Member Functions

< Static member functions can only access static data member

class Student {
public:

Int getlD() const;
private:

static int lastiDNumber;

Int m_id;

static int getNewlID();

static int incrementNewlID();

b

Static Member Functions

< Static member functions can only access static data member

class Student {
public:

Int getlD() const;
private:

static int lastiDNumber;

Int m_id;

static int getNewlID();

static int incrementNewlID();
j

< The keyword static is not repeated in the function definition

int Student::getNewlID() {
return lastiDNumber:

}

Static Member Functions

< Static member functions can only access static data member

class Student {
public:

Int getlD() const;
private:

static int lastiDNumber;

Int m_id;

static int getNewlID();

static int incrementNewlID();
j

< The keyword static is not repeated in the function definition

int Student::getNewlID() { int Student::incrementNewID() {
return lastiDNumber; return lastiDNumber++;

¥ ¥

Static Member Functions

< Static member functions can only access static data member

class Student { : :
public: < The constructor might take this form

Student();

Int getlD() const;
private:
static int lastiDNumber; }

Student::Student():m_id(getNewID()) {
IncrementNewID()

Int m_id;
static int getNewlID();

static int incrementNewlID();
¥

< The keyword static is not repeated in the function definition

int Student::getNewlID() { int Student::incrementNewID() {
return lastiDNumber; return lastiDNumber++;

¥ ¥

Static Member Functions (cont'd)

< If the static member function is public, it can be accessed without
reference to a particular object, ex.

Static Member Functions (cont'd)

< If the static member function is public, it can be accessed without
reference to a particular object, ex.

Integer::convertFromint(10);

Static Member Functions (cont'd)

< If the static member function is public, it can be accessed without
reference to a particular object, ex.

Integer::convertFromint(10);
Integer::unitTest();

Static Member Functions (cont'd)

< If the static member function is public, it can be accessed without
reference to a particular object, ex.

Integer::.convertFromint(10);
Integer::unitTest();

+ Static member function does not have the implicit this pointer
because it Is not invoked with any object.

Static Member Functions (cont'd)

< If the static member function is public, it can be accessed without
reference to a particular object, ex.

Integer::.convertFromint(10);
Integer::unitTest();

+ Static member function does not have the implicit this pointer
because it Is not invoked with any object.

< Sometimes use static member functions to implement callback
functions that do not allow any implicit argument.

