
1

Assertion

C++ Object Oriented Programming

Pei-yih Ting

96/02 NTOU CS

2

Contents
Errors

Error handling in procedural programming language

Error messages vs. error codes

Modifying interface to help the client

Assertions - make your code prove that it is correct

Types of assertions

Preconditions

Postconditions

Class invariants

Conditional compilation and assertions

3

What is an Error?
Compile-time error: grammatical errors or typos such that the 
compiler cannot translate your program to machine instructions
Run-time error: the running program does not provide the claimed 
functionalities

Input data is incorrect (either in format or semantics)
The data representations/algorithms are incorrect.
The computer resources do not satisfy the program requirements. 
(Not enough memory, disk space, process privilege, i/o 
capability…)
The employed tools (function libraries, external servers, …) do 
not provide required functionalities.

Most of the above errors occur when the running program and 
environment do not meet the program specification.

The interface between client codes and server codes is described in 
the specification.  When either side of codes does not follow the 
spec, some errors occur. 4

Errors in Procedural Programming
Functions being called (server codes, utility functions, supporting 
functions, lower level functions)
int server() {

…
error occurring position 1; // first type of error
…
error occurring position 2; // second type of error
…

}

Calling functions (client codes, controlling functions, upper level 
functions)

…
server(); // first call environment
…
server(); // second call environment
…

Proper error handling depends on the knowledge of both

exactly what type of error occurs and 

in which environment the server function is invoked



5

Server Handles Errors
const int kStackSize = 3;
const int kEmptyStack = -1;
class StackT {
public:

StackT();
void Push(int element);
int Pop();

private:
int fArray[kStackSize];
int fTop;

};

StackT::StackT():fTop(kEmptyStack) {
}

void StackT::Push(int element) {
if (fTop+1 == kStackSize)

cout << "Error! Stack full.\n";
else

fArray[++fTop] = element;
}

int StackT::Pop() {
if (fTop == kEmptyStack) {

cout << "Error! Stack empty.\n";
return kEmptyStack; // meaningless

}
else

return fArray[fTop--];
}

6

Server Handles Errors (cont’d)
void main() {

StackT stack;

stack.Push(1); stack.Push(2); stack.Push(3); stack.Push(4);

cout << stack.Pop() << '\n' 

<< stack.Pop() << '\n' 

<< stack.Pop() << '\n' 

<< stack.Pop() << "\n";

}

Output:

Error! Stack full.

3 

2

1

Error! Stack empty.

-1

Problems: 

1. It does not know the calling environment.

2. It often handles errors uniformly and
somewhat blindly.

7

Client Handles Errors
bool StackT::Push(int element) {

if (fTop+1 == kStackSize)
return true;

else {
fArray[++fTop] = element;
return false;

}
}

void main() {
StackT stack;
bool error;
int value;

error = stack.Push(1);
if (error)

cout << "1 is not pushed in\n";

int StackT::Pop(bool &error) {
if (fTop == kEmptyStack) {

error = true;  // type 1
return kEmptyStack; // meaningless

}
else if (bLocked) {

error = true;  // type 2
return kEmptyStack; // meaningless

}
else {

error = false;
return fArray[fTop--];

}
}

error = stack.Push(2);
if (error) cout << “2 is not pushed in\n";

8

Client Handles Errors (cont’d)
error = stack.Push(3);
if (error) cout << "3 is not pushed in\n";

error = stack.Push(4);
if (error) cout << "4 is not pushed in\n";

value = stack.Pop(error);

if (!error)

cout << value << '\n';

else

cout << "The first pop failed!\n";

value = stack.Pop(error);

if (!error)

cout << value << '\n';

else

cout << "The 2nd pop failed!\n";

value = stack.Pop(error);

if (!error)

cout << value << '\n';

else

cout << "The 3rd pop failed!\n";

value = stack.Pop(error);

if (!error)

cout << value << '\n';

else

cout << "The 4th pop failed!\n";

}

4 is not pushed in
3
2
1
The 4th pop failed!

Output:



9

Client Handles Errors (cont’d)
Problems:

1. It does not know where and why exactly the error occurs in the
server codes.

2. It often handles errors uniformly and somewhat blindly.

Let the server handle the error usually can reduce the overall code 
size.  However, it is only possible when the error handling methods 
for all usages are exactly the same. (perform the factoring operation)

It’s possible that the client code passes some environment identifying 
information in such that the server can handle errors properly.

Let the client handle the error usually makes the client codes longer. 
Frequently, only client codes know what to do with a particular error. 

It’s possible that the server code passes some exact error types (the 
error code) out such that the client code can handle different errors. 

10

Interface Modification
The StackT example shows that “pushing errors” and “popping 
errors” are frequent/normal behaviors by the specification.

It is preferred not to call them “error”.

Also, it is preferred that each public method has only single 
simple behavior, for example, Push(item) puts for sure the 
specified item onto the stack, instead of various combined 
behaviors, i.e. nothing happens when stack is full, otherwise item 
is pushed onto the stack.

Usually, we can improve the design by modifying the interface -

provide client extra interface methods such that the behaviors 
of Push(item) can be better controlled/predicted

In the following example, we add two more interface methods to the 
StackT class: IsFull(), IsEmpty() so that the behaviors of Push() 
and Pop() are simplified.

11

Helping the Client
We can add two functions to the StackT class (the server)
bool StackT::IsEmpty() const {

return fTop == kEmptyStack;

}

bool STackT::IsFull() const {

return fTop+1 == kStackSize;

}

In the server codes: NOT

handling errors any more
void StackT::Push(int element) {

if (!IsFull())

fArray[++fTop] = element;

}

int StackT::Pop() {

if (!IsEmpty())

return fArray[fTop--];

else 

return kEmptyStack; // meaningless

}
12

Helping the Client (cont’d)
In the client code
void main() {

StackT stack;

if (!stack.IsFull())
stack.Push(1);

else
cout << "Deal with push error\n";

if (!stack.IsEmpty())
cout << stack.Pop() << '\n';

else
cout << "Deal with pop error\n";

}



13

Exceptions vs. assert()
assert():

Catches situations that SHOULD NOT happen (but did happen).  
For example, promise made by other classes.  Basically these are
cases you don’t want to handle (at least NOT specified in the 
program specification).

Typically disabled before product delivery!

Should not be seen by the end customer!

Used to check / track down programmer’s own bugs

Exception: try-throw-catch
Should be seen by people using our code.  Not disabled in the 
final released version.

Indicates user errors (e.g. invalid argument errors)

Indicates some system errors (e.g. file not found)
14

assert() / the MS blue screen
Your program stops immediately.  Usually used in debugging.

Why should your program continue if an error has occurred?

1. Non-fatal errors
void Stack::push(int element) {

assert(!isFull());
m_top++;
m_array[m_top] = element;

}
The failure of the call to push may be non-fatal to the rest of the program.

2. Failing gracefully
p = new int[kBigArraySize];
assert(p!=0);

Although the memory is insufficient, the user may want to save the 
existing data before quitting.

3. Safety-critical programming
The patient will die if the software crashes. / System might be hacked.

15

Error Handling in C++
Three levels:

assert() statements: those errors that the specification of the 
program excludes.  You don’t want it to be handled 
automatically by your program.

If statements: those expected situations that happened normally 
and quite often, e.g. user enter incorrect data, file not opened, …

Exceptions: those expected/unexpected situations that happened 
rarely (say 1 out of 100), e.g. disk access errors, … Or, you want 
to avoid long/ugly error handling codes…

Rule of thumb: If in doubt, use exceptions
Sometimes, there are still voices of using a single goto statement
to handle all sorts of memory deallocation after program fails.  In
general, this mechanism can be replaced by the exception handling.

16

Assertions

An assertion is a statement that must be true for the 
function to be correct.

Three types of assertions:

Preconditions

Postconditions

Class invariants



17

Preconditions
An assertion that must be satisfied before execution of the function.
#include <assert.h>

void StackT::Push(int element) {

assert(!IsFull());

fArray[++fTop] = element;

}

int StackT::Pop() {

assert(!IsEmpty());

return fArray[fTop--];

}

void main() {

StackT stack;

stack.Push(1); stack.Push(2); stack.Push(3); stack.Push(4);

}

Assertion (!IsFull()) failed in stack.c on line …

do not follow the protocol 18

Postconditions
An assertion that must be satisfied after execution of the function.
void StackT::Push(int element) {

int originalTop = fTop;

assert(!IsFull());

fArray[++fTop] = element;

assert(!IsEmpty() && (fTop == originalTop+1));

}

int StackT::Pop() {

int originalTop = fTop;

assert(!IsEmpty());

int value = fArray[fTop--];

assert(!IsFull() && (fTop == originalTop-1));

return value;

}

19

Better Example of Postcondition
Class DataT {

friend class StackT;

private:

int fData;

DataT(int data);

};

class StackT {

public:

StackT();

void Push(int element);

….

private:

DataT *fArray[kStackSize];

int fTop;

};

void StackT::Push(int element) {

assert(!IsFull());

DataT *temp = new DataT(element);

fArray[++fTop] = temp;

assert(temp!=NULL);
}

temp might actually be NULL if 

new operator fails to allocate 

required memory.

20

Class Invariants
A class invariant is a condition that holds true for the entire class.

A class invariant must satisfy two conditions:

1. true at the end of every constructor

2. true at entrance and exit from every public mutator function

Note: from the above 

a. A class invariant holds only for its client (might not hold at any 
particular instant, especially inside any member function)

b. It is assumed that these objects work in a single-threaded 
environment.

When does the invariant not have to be true?

inside a private member function

bool StackT::ClassInvariant() {

return (fTop>=kEmptyStack) && (fTop<kStackSize);

}



21

Class Invariants (cont’d)
First condition:
StackT::StackT() : fTop(kEmptyStack) {

assert(ClassInvariant());
}

Second condition:
void StackT::Push(int element) {

assert(ClassInvariant());

assert(!IsFull());

fArray[++fTop] = element;

assert(!IsEmpty());

assert(ClassInvariant());
}

void StackT::Pop() {

int value;

assert(ClassInvariant());

assert(!IsEmpty());

value = fArray[fTop--];

assert(!IsFull());

assert(ClassInvariant());
return value;

}

22

Managing Assertions
Problems of using assertions

1. Many checkings require time, program might be sloppy

2. The abortion message should never be seen by the user.  (the MS 
window’s blue error screen)

3. These checkings should no longer be present in a released S/W. 

Use conditional compilation
#define _NDEBUG

StackT::StackT() : fTop(kEmptyStack) {

#ifndef _NDEBUG

assert(ClassInvariant());
#endif

} 

void StackT::Push(int element) {
#ifndef _NDEBUG
assert(ClassInvariant());
assert(!IsFull());
#endif
fArray[++fTop] = element;
#ifndef _NDEBUG
assert(!IsEmpty());
assert(ClassInvariant());
#endif

}


