
1

Chapter 1. Introduction to Objects

C++ Object Oriented Programming

Pei-yih Ting

NTOUCS

2

Contents
Differences of OOP from procedural
programming

Overview of OOP features and some C++
features

Some basic UML notations

Analysis and Design methodologies

Extreme Programming Features

Why C++ succeeds

3

OOP vs. Procedural Programming

Hardware improvements mark the revolution of
computer technology in the past 40+ years.

Procedural programming:
you program tends to control directly the
underlying machine, which is mostly built
with the von Neuman architecture

4

OOP vs. Procedural (cont’d)
It is now changing gradually: tools are beginning
to look less like machines and more like parts of
our minds or daily lives --- much more accessible
to general public (ex. Desktop metaphor,
Document center…)

Object-Oriented Programming (OOP) is part of
this movement toward using the computer as an
expressive medium.

5

Progress of Abstraction
All (programming) languages provide abstractions.

abstraction: you transform your physical problem into a
description in some other media

problem statement, machine language, assembly language,
imperative languages (Fortran, BASIC, C, PASCAL,
COBOL…), functional languages (LISP, ML, Scheme…),
declarative languages (PROLOG, GPSS…), object-oriented
languages (SIMULA, Smalltalk, Eiffel, C++, Java…)

Assembly and Imperative Language:
abstraction requires you think in terms of the structure of the
computer (solution space) rather than the structure of the
problem (problem space)

6

Progress of Abstraction (cont’d)

Good programmers do the mapping faster, with less
errors, and produce better structured codes.

Programmers need to know exactly the operating
mechanisms of the underlying machines.

Often:
the mapping mechanism are too complex to be documented
well or even thrown away completely
result programs are expensive to maintain

programmermodel in the
problem domain
(people, teacher,
manager,staff,

data store, utility
tools ……)

model in the underlying
machine (arrays, loops…)

tough times with black coffee
and cigarettes

7

Progress of Abstraction (cont’d)
Functional, Declarative, and 4-th Gen. languages:

Each programming languages choose particular views of the
world

“all problems are ultimately lists” in LISP

“all problems are algorithmic” in APL

“all problems are logical production rules” in PROLOG

“all problems are math equations” in Mathematica

“all problems are descriptive words” in WORD

“all problems can be manipulated with graphical symbols”
in some visual languages

Each of these approaches is a good solution to the particular
class of problem it is designed to solve.

When you step outside of that domain, it becomes awkward. 8

Progress of Abstraction (cont’d)
Object-Oriented Programming (Analysis/Design)

Programmer represents elements in the problem space directly.

OOP minimizes transformations a programmer need to do on the
original problem in order to let the computer solve it.

OOPL is not constrained to any particular type of problem.

Describe all elements in the problem space as “objects”
(although a programmer still has some auxiliary abstract objects
that have no correspondence in the physical problem domain).

When you read the codes describing the solution, you are
reading words that also express the problem. You don’t need
those “transformation guidelines invented by any programmer”.
The code is not a bunch of CPU/Memory/IO operations.

9

Progress of Abstraction (cont’d)
Objects …. The fundamental ingredients in OOP.

attributes/properties/states/data

behaviors : answering requests (messages)

Five basic characteristics of Smalltalk -- a pure OOPL
1. Everything is an object

2. A program is a bunch of objects telling each other what to do by
sending messages

3. Each object has its own memory (probably made up of other
objects)

4. Every object has a type (instance/class) …. classification

5. All objects of a particular type can receive the same messages
also, an object of type “circle” is also an object of type “shape”
substitutability is one of the most powerful concepts in OOP. 10

Algorithmic vs. OO Decomposition
In summary:

Procedural programming: algorithmic decomposition
or functional decomposition of the problem, the
software is viewed as a process

Object Oriented programming: decompose the
problem into a set of well-defined objects, functional
decomposition is addressed after the system has been
decomposed into objects (i.e. on top of objects)

decomposition is more intuitive

encourage the reuse of objects

emphasize the encapsulation at each level

11

Overview of OOP features
An object has an interface

The hidden implementation (Encapsulation)

Reusing the implementation: hierarchy

Reusing the interface: inheritance

Is-a vs. is-like-a relationships

Interchangeable objects with polymorphism

Creating and destroying objects

Exception handling: dealing with errors
efficiently

12

Class and Object
class: objects that have common characteristics and
behaviors … types, abstract data types

user defined, works almost exactly like built-in data types
ex.

Bank account: balance/deposit/withdraw...
Alarm clock
TV set
ATM

objects/variables/instances
creation: using the class as a template
manipulation: sending messages or requests

a programmer defines a class to fit a problem rather than
being forced to use existing data types

characteristics/attributes/properties/data
behaviors/functionality

13

Object has Interface
Interface:

the interface establishes requests that you can make for a
particular class of objects

Send a message (make a request):
Light light;
light.on();

Implementation: void Light::on()
{

// do something
}

UML notation

The services Light
objects provide.

Light
on()
off()
brighten()
dim()

type name

interface

14

Encapsulation
class creator: those who create/maintain new data types
client programmer: the class/object consumers who use

the new data types in their applications

Implementation details are intended to be hidden from all
client programmers except the class creator.

Integrity of the internal state of an object can be maintained.

Class creator can change the hidden portion at will without
breaking the contract – the interface.

Reduce program bugs: client programmer tends to bypass the
official contract promised by the interface and make very good
use of every aspect of an existing code implementation.

Enforced through access control: public/protected/private

15

Reusing the Implementation
Code reuse is one of the greatest advantages that OOPL
provide.
A class can have multiple instances.
Build up hierarchies: avoid reinventing wheels

composition

aggregation

Country President

class Car
{
private:

Engine *m_engine;
};

class Country
{
private:

President m_president;
};

Note: hierarchical structure in this way is flexible,
can be dynamically changed at run time

Car Engine

16

Inheritance
Inheritance: take an existing class, clone it, and
then make modifications or additions to the clone.

Base class / super class / parent class vs.
Derived class / sub class / child class / inherited class

Three things are inherited by the derived class :
interfaces, implementations (data and functionality), and
relationships

Animal

Dog

Window

Dialog

Vehicle

Car

Employee

Manager

17

Reusing the Implementation
inheritance

class Shape
{

….
};

class Triangle : public Shape
{

….
};

Shape

Triangle
Note: 1. codes and data can be reused

2. static reuse, determined at compile time

CAVEAT: Because inheritance is important in object-oriented
programming, it is often over-emphasized. New OOP
programmers can get the incorrect idea that inheritance
should be used everywhere. This is not true. Always
consider composition first when creating classes, since
it is simpler and more flexible.

18

Reusing the Interface
You use inheritance if you want
your objects of the Triangle class
be handled by client programs
exactly the same as if they were
objects of the Shape class.
(From the point of view of client programmers, these

two types of objects are indistinguishable. They are
completely substitutable in the sense that they all
provide the same Shape interface.)

Why do people like to ignore the differences between a
triangle object and a circle object and call them Shape
objects? in order to simplify the handling mechanism

Shape

Triangle Circle

19

Reusing the Interface (cont’d)

Trash recycling machine can process all three classes
(bottle, aluminum can, and steel can) in one unified way.

Does this model capture the essence of real world model?

exploit
“interface reusing”

mechanism of
“old codes call new codes”

trash recycling
machine

trash

bottle steel canaluminum
can

garbage
truck

20

Reusing the interface

All the interfaces (messages) are inherited by child
classes. All the code implementations (message
handling mechanisms) are also inherited by default if
you do not modify them.

exploit “interface reusing”

Triangle

CAD Canvas
Shape

draw()
erase()
move()
getColor()
setColor()

Circle Square

21

Is-a Relationship
Reuse the interface of the base
class through inheritance
only override base-class functions,
not adding new ones

changing the behavior of an existing
base-class function by reimplement it
in the derived class

A derived-class object
“is a” base-class object.

It can be used through out
the client program as a
replacement for a base-class object.
the “substitution principle”

Shape
draw()
erase()
move()
getColor()
setColor()

draw()
erase()

Circle
draw()
erase()

Square
draw()
erase()

Triangle

22

Is-like-a Relationships
Can you add brand new functionality to a derived class?

Yes. You add them when you discover
them. This process of discovery and
iteration of your design happen
regularly in the design of your OOP
process. However, these added
functions will not be exploited by all

existing client codes. This sort
of design is not the main
purpose for the existence of
inheritance.

• A triangle “is like a” shape.

23

Is-like-a Relationships (cont’d)
A heat pump “is like a” cooling system in the aspect that
it provides the cooling function to a thermostat.

24

Polymorphism
reuse the interface in a class hierarchy
treat an object NOT as the specific type that it is but instead
as its base type (the abstract properties).

Client programmers can write code that doesn’t depend on
specific types (everybody wants easier life)

ex. In the shape example, from the point of view of the canvas,
circles, squares, and triangles can be drawn, erased, and
moved by just sending a message to a shape object

ex. When you write with a pen, most of the time you don’t need to
know the brand of that pen before you can take a memo.

New types can therefore be added to the class hierarchy without
modifying the client programs –

old codes (client) call new codes (server)

25

Polymorphism (cont’d)

26

Polymorphism in C++
Dynamic binding (late binding) through function
pointers (called virtual function table)

When you send a message to an object, the code being called
is not determined until runtime.

The compiler does ensure that the function exists and performs
type checking on the arguments and the return value.

Virtual function
void doStuff(Shape& s)
{

s.erase();
…
s.draw();

}

class Shape
{

...
public:

virtual void erase();
virtual void draw();
…

};

Polymorphic pointer/reference

talk to the object according to the interface
defined by its base class (message sending)

Circle c;
Triangle t;
doStuff(c);
doStuff(t);

27

Polymorphism in C++ (cont’d)
Upcasting

treating a derived type object as though it were its base type
object

Downcasting
cast in the reverse direction through dynamic_cast<>()
usually appears with the object selection codes
dangerous, breaking the checking enforced by the type system
often signals some defects in the design of the class hierarchy

28

Creating and Destroying Objects
C/C++:

control of efficiency is the most important issue

speed memory

give the programmer choices of full control on an object’s life
cycle

global data segment

register

stack … automatic variable compiler does the control (fast
initialization, but little flexibility)

heap programmer takes full control (longer initialization period, but
greater flexibility)
new/delete new []/delete []

Note: Java instead treat platform independence and ease of programming
the most important goal… It handles memory automatically with
a garbage collector module.

tradeoff

29

Exception Handling
A very difficult issue, many programming languages
simply ignore the issue.

A major problem with most schemes: rely on
programmer vigilance in following an agreed-upon
convention that is not enforced by the language

ex. C return value and errno

C++: exception handling (implicitly in the language)
exceptions are ‘thrown’ from the site of the error and can be
‘caught’ by an appropriate ‘exception handler’

different, parallel path of execution, automatically handle
resource releasing codes (unlike notorious exit() in stdlib)

does not interfere with the normal flow of execution control

exception can not be ignored 30

Analysis and Design Methodologies
Method (methodology): a formal set of processes and
heuristics to analyze, design and build a software system

most OOAD methodologies are Spiral/Iterative, RAD
in the process, you might build codes in one stage and modify them or
throw away them in another stage

the goal of an OOAD methodology is to discover
What are the objects? (How do you partition your system?)
What are their interfaces? (What messages are sent and handled?)

Phase 0: Make a plan, set up the ‘mission statement’
ex. In an air-traffic control system: you are building

“The tower program keeps track of the aircraft”

Phase 1: What are we making?
Requirements analysis and system specification
Use cases

31

Use Cases
Use cases

identify key features
in the system that will
reveal some of the
fundamental classes.

answers to questions like

Who will use this system?

What can those actors do with the system?

How does this actor do that with this system?

How else might this work if someone else were doing this, or if the same
actor had a different objective? (to reveal variations)

What problems might happen while doing this with the system? (to reveal
exceptions)

32

Use Cases (cont’d)
ex. auto-teller

what the auto-teller does in every possible situations (scenarios)
a use case --- a collection of scenarios (flow of events)

a sample scenario:
“What does the auto-teller do if a customer has just deposited

a check within 24 hours and there’s not enough in the
account to provide the desired withdrawal”

A use case does not need to be terribly complex, even if the
underlying system is complex. It is only intended to show the
system as it appears to the user.

You don’t need to find the complete and perfect set of use cases for
you system at the very start of the analysis stage. Many things will
reveal themselves in time.

33

Analysis and Design (cont’d)
Phase 2: How will we build it? (design of objects)

Class-Responsibility-Collaboration (CRC card):
name of the class
responsibilities of the class: what it should do, what it should response
collaborations of the classes: what other classes does it interact with?

Have a group of people ready. Each person takes responsibility for several
classes. Then you can run a live simulation by solving one scenario at a
time, deciding which messages are sent to the various objects to satisfy
each scenario

Five stages of object design:
Object discovery
Object assembly
System construction
System extension
Object reuse

Guidelines for object development
34

Analysis and Design (cont’d)
Phase 3: Build the core

Phase 4: Iterate the use cases
add a feature set during one iteration, the basis for one
iteration is a single use case

Phase 5: Evolution/ maintenance
tasks:

make all features work according the original requirements
fixing bugs
adding features that the customer forgot to mention
adding new features as the need arises

make your program go from good to great

OOPL are particularly adept at supporting this kind of
continuing modifications (Interface/Object Structure and
Boundary/Encapsulation/Class hierarchy)

35

Extreme Programming (XP) Features
Kent Beck, “Extreme programming explained: embrace change”

XP is both a philosophy about programming and guidelines to do it.

Write tests first:basis for refactoring (test driven)
traditionally low priority task, just for sure that everything works

‘test codes’ have equal or even greater priority than the ‘normal
codes’ in XP, write the test before you start coding the function

CPPUnit, JUnit for the unit test and functional test, running the
tests every time you do a build (you have some modifications to
your codes). Your test codes will always catch any problem that
you have already tested and reintroduced in this modification.

Pair programming
one coding, the other thinking and verifying (not resting)
one gets stuck, the other just takes over

36

Why C++ Succeeds
A better C: stricter type system, namespace, reference...

You’re already on the learning curve: based on C

Efficiency: same low level controls as in C

Systems are easier to express and understand

Maximal leverage with libraries: classes, encapsulation

Source-code reuse with templates: generic programming

Error handling: exception handling

Programming in the large: Object Oriented Analysis and
Design + namespaces + encapsulation/interfaces (reduce code
coupling)

37

Definitions by Horowitz
Object: an object is an entity that performs computations
and has a local state.

Object-oriented programming: is a method of
implementation in which

Objects are the fundamental building blocks

Each object is an instance of some type (or class)

Classes are related to each other by inheritance and other
relationships

Object-oriented language:
It supports objects.

It require objects to belong a class.

It supports inheritance.
38

Some Terms
Data Encapsulation or Information Hiding: is the
concealing of the implementation details of a data object
from the outside world.

Data Abstraction: is the separation between the
specification of a data object and its implementation.

Data type: is a collection of objects and a set of
operations that act on those objects.

Abstract data type (ADT): is a data type that is
organized in such a way that the specification of the
objects and the specification of the operations on the
objects is separated from the representation of the
objects and the implementation of the operations

39

Paradoxial Description
Rob Pike –

“OO languages conceptually provide little extra
over judicious use of function pointers in C”

From the implementation level, this is true indeed. But
this should not discourage you from using OO
languages. After all, all languages are sequences of
machine instructions.

From the conceptual design level, this description is
certainly incorrect because it neglects the modeling
capability provided by an OOPL.

