
1

Dynamic Memory Allocation
with malloc() and free()

Pei-yih Ting

2

malloc() and free()

 Library routines for managing the heap

int *ary;
ptr = (int *) malloc(sizeof(int) * 100);
ary[5] = 3;
free(ary);

 Allocate and free arbitrary-sized chunks
of memory in any order

3

malloc() and free()
 More flexible than automatic variables (stacked)
 More costly in time and space

 malloc() and free() use complicated non-constant-
time algorithms

 Each block generally consumes two additional words
 Pointer to next empty block

 Common source of errors
 Using uninitialized memory
 Using freed memory
 Not allocating enough
 Neglecting to free disused blocks (memory leaks)

 Size of this block

4

malloc() and free()

 Memory usage errors so pervasive, entire
successful company (Pure Software) founded
to sell tool to track them down

 Purify tool inserts code that verifies each
memory access

 Reports accesses of uninitialized memory,
unallocated memory, etc.

 Publicly-available Electric Fence tool does
something similar

5

Dynamic Storage Allocation

 What are malloc() and free() actually doing?
 Pool of memory segments:

free

malloc()

from the
user side

6

Dynamic Storage Allocation

 Rules:
 Each segment contiguous in memory (no holes)
 Segments do not move once allocated

 malloc()
 Find memory area large enough for segment
 Mark that memory as allocated

 free()
 Mark the segment as unallocated

7

Dynamic Storage Allocation

 Three issues:

 How to maintain information about free

memory

 The algorithm for locating a suitable block

 The algorithm for freeing an allocated block

8

Simple Dynamic Storage
Allocation

 Three issues:
 How to maintain information about free

memory
 Linked list

 The algorithm for locating a suitable block
 First-fit

 The algorithm for freeing an allocated block
 Coalesce adjacent free blocks

9

Simple Dynamic Storage
Allocation

Next
Size

Next
SizeSize

Chain of
free
blocks

Allocated block

malloc()

 Previous next
pointer updated

 Newly-allocated
region begins with
a size value

 First large-enough
free block selected

 Free block
divided
into two

10

Simple Dynamic Storage
Allocation

free(a)

Appropriate
position in free list
identified
Newly-freed region
added to adjacent
free regions

11

Dynamic Storage Allocation

 Many, many variants

 Other “fit” algorithms

 Segregation of objects by sizes
 8-byte objects in one region, 16 in another, etc.

 More intelligent list structures

